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Accurate measurement of oxygen uptake ( ¤VO2) dynamics and maximal oxygen consumption ( ¤VO2max), a vital marker of
cardiorespiratory fitness and exercise capacity, requires specialized exercise physiology laboratories with costly equipment.
This study develops a Temporal Fusion Network (TFN) approach utilizing easily accessible physiological parameters (heart
rate, heart rate reserve, tidal volume, and breathing frequency), which can be measured with wearable sensors, anthropometric
variables (age, gender, height, and weight), as well as health status to estimate ¤VO2 dynamics during cardiopulmonary exercise
testing (CPET). These input physiological parameters were derived from 140 laboratory CPET of a diverse cohort of adults (90
males, 50 females; 77 healthy, 63 smokers; average age: 26.6 years), to analyze ¤VO2 dynamics. The TFN model demonstrated
high predictive accuracy to estimate ¤VO2 dynamics, with a Root Mean Square Error (RMSE) of 0.03 L/min and an R-squared
(R2) value of 0.92, indicating robust performance across varied population groups. This TFN model paves the way for practical
and cost-effective approach to estimate ¤VO2 during exercise, with potential integration with consumer health devices to
expand accessibility and, enhance its utility for clinical and fitness applications.
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1 INTRODUCTION
Oxygen uptake ( ¤VO2) dynamics during cardiopulmonary exercise testing (CPET) is the standard metric to
evaluate the efficiency of the cardiovascular, respiratory and skeletal muscle systems to transport, and utilize
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oxygen in response to varying exercise intensities [1]. Maximal oxygen consumption ( ¤VO2 max) is derived from
instantaneous ¤VO2 measurements and represents the maximum oxygen uptake an individual can achieve during
incremental CPET [1]. It is a quantitative benchmark of an athlete’s or patient’s aerobic fitness and is used to
develop tailored training or rehabilitation plans [2]. Instantaneous ¤VO2 measurements are used to estimate energy
expenditure (EE), enhancing nutrition management for elderly patients frequently admitted to intensive care
units [3, 4]. It also serves as a biomarker in medical research, allowing scientists to monitor the progression and
status of diseases, including chronic cardiovascular and respiratory conditions [5, 6].

The common standard for measuring ¤VO2 is cardiopulmonary exercise testing (CPET), which requires subjects
to wear a mask or mouthpiece connected to a metabolic cart [7]. This equipment measures the volume and
gas concentrations of inhaled and exhaled air. However, the bulky nature of the machinery and the need for
professional operation in a lab setting limit its accessibility. Portable devices developed by companies like
COSMED (Rome, Italy) [8] and VacuMed (USA) [9] offer more convenient testing options, but their high cost and
the discomfort of wearing a facial mask still present barriers to widespread use, especially for prolonged periods
during routine daily activities [10]. To overcome these limitations, some researchers have attempted to predict
¤VO2 max using multivariate equations based on individual characteristics such as age, sex, weight, and height
[11–14]. Additionally, commercial smartwatche products can estimate ¤VO2 max [15], However, these methods
often yield a single ¤VO2 value and their models lack generalization across diverse populations. The significant
error rates associated with these methods also limit their practicality in real-world settings [12, 15].

Recent advancements in wearable technology and artificial intelligence have provided new avenues to address
health and exercise-related challenges [16]. Smart wearables have been validated for providing accurate mea-
surements of physiological indicators such as heart rate (HR), electrocardiogram (ECG), and oxygen saturation
(SpO2) [17, 18]. Smart garments, for instance, can provide real-time measurements of respiratory parameters such
as minute ventilation (VE) and breathing frequency (BF) [19]. These accessible parameters have been used in
machine learning-based ¤VO2 estimation and prediction models [20–23]. However, these methods exhibit several
limitations. Primarily, they have relied on continuous physiological variables, such as VE, VT, and HR, while
often omitting anthropometric variables like gender, height, and weight, which can enhance estimation models
of ¤VO2. Additionally, they tend to overlook the temporal dynamics inherent in time-varying variables, such as
workload patterns that vary with different exercise protocols. Another critical limitation is the size of the datasets
used for training and testing these models. For instance, the study conducted by Amelard et al., [21] used one
of the largest datasets to estimate ¤VO2, with a size of 22 participants, which may not adequately represent the
broader population or the diversity of physiological responses. Furthermore, many models lack interpretability,
failing to provide clear explanations for the impact of each input variable on the ¤VO2 outcome.

To overcome the limitations of existing approaches, we employ a comprehensive temporal fusion model that
leverages Long Short-Term Memory (LSTM) or Temporal Convolutional Network (TCN) as the encoder and
employs attention mechanisms to ascertain the importance of input factors. Our model combines physiolog-
ical parameters derived from laboratory CPET, that can be measured using wearable-sensors, with essential
anthropometric information to estimate instantaneous ¤VO2 throughout CPET with greater precision. Our key
contributions are summarized as follows:

• We analyzed dataset of 140 participants which is the largest in literature to the best of our knowledge.
• We incorporate anthropometric variables such as age, gender, height, weight, in addition to health status,
and physiological parameters VT, BF, HR, and HRR to enhance our model and its performance in estimating
¤VO2 over various time spans.

• We design a TFN model leveraging physiological data that can be measured from cost-effective parameters
measured wearable sensors in a non-invasive and continuous manner to estimate instantaneous ¤VO2 during
exercise and daily life activities.
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• We account for temporal dynamics by including workload time-dependent variable workload data for each
participant.

• We enhance the model’s transparency by providing interpretable weights for each input variable, offering
valuable insights into the relative importance of each input feature for ¤VO2 estimation.

2 RELATED WORKS
The corpus of related literature encompasses numerous studies that have focused on estimating the singular
¤VO2 max value by employing a range of statistical and machine learning methods [11–14, 24–28]. However, only
a few delved into the realm of instantaneous ¤VO2 estimation [21–23].

2.1 ¤VO2max estimation
Some research utilized questionnaires to gather basic information about individuals and then applied mathematical
modeling or machine learning techniques to construct models. These models often incorporated anthropometric
variables such as age, height, weight, gender, and maximal heart rate (HR max) to calculate ¤VO2 max [11–14, 25].
Table 1 provides a comprehensive overview of these studies, detailing their methodologies and the input variables
they used.

Table 1. Summary of methods for ¤VO2max estimation

Study Methods Input Variables
Frade et al. 2023 [25] SVR Sex, age, weight, height, and body mass index,

breathing rate, minute ventilation, total hip ac-
celeration, walking cadence, heart rate, and tidal
volume

Petelczyc et al. 2023 [11] Differential model Gender, age, HR, HRmax, workload
Abut et al. 2019 [13] SVM, GRNN, SDT Gender, age, height, weight, HRmax, time, HR
Przednowek et al. 2018 [12] SVM, MLP Gender, distance, HRmax, recovery HR, age,

weight, height, waist, hip, waist to height ratio,
waist to hip ratio, BMI, fat mass index, fat-free
mass index, body adiposity index, body surface
area, fat, fat-free percentage, and total body water.

Abut et al. 2016 [14] SVM, MLP Gender, age, MX-HR, SM-ES, Q-PFA

2.2 Instantaneous ¤VO2 estimation
Estimating instantaneous ¤VO2 poses greater challenges than estimating ¤VO2 max, because it involves capturing
and understanding the complex dependencies and patterns present in ¤VO2 sequential data. Determining ¤VO2 max
typically involves measuring peak oxygen uptake during a controlled test, while instantaneous ¤VO2 requires con-
tinuous monitoring throughout an exercise session. This demands the resolution of notable technical challenges,
and the variability of ¤VO2 across different exercises and individuals complicates models. Here, we review recent
methodologies aimed at estimating instantaneous ¤VO2 and identify limitations within existing approaches, thus
framing the context for our proposed solution.
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One of the earliest attempts to quantify dynamic ¤VO2 was by Su et al. in 2007, who employed support vector
regression (SVR) to develop a model based on the pseudo-random binary sequence (PRBS) signal during running
[29]. However, this approach was limited by its reliance on treadmill speed as the sole input, overlooking the
inter-individual variations in physiological response. With the advancement of wearable technology, capable of
capturing detailed physiological parameters, there has been an increase in studies utilizing machine learning and
statistical methods to analyze data from these devices [20–23, 30].

Table 2. Summary of methods for estimating Instantaneous ¤VO2

Study Data
size

Training
data

Testing
data

Methods Model inputs Device Protocols or exer-
cise

Su et al.
2007 [29]

6 6 6 SVR PRBS and speed Treadmill Use PRBS to con-
trol the treadmill
protocol

Altini et al.
2015 [22]

22 21 1(LOOCV) SVM ACC, HR, anthro-
pometric features

ECG necklace,
ACC

Lying, sedentary,
dynamic, walking,
biking, running

Cook et al.
2018 [30]

42 28 14 IAA ECG, ACC, HR DREEM,
COSMED
K4b2

Bruce protocol

Zignoli
et al.
2020[20]

7 7 7 LSTM HR, RF, P, 𝜔 power meter,
COSMED

Arbitrary proto-
cols, Wingate test

Shandhi
et al. 2020
[23]

17 16 1(LOOCV) XGBoost SCG, ECG, AP Custom-built
wearable patch

Treadmill protocol,
outside protocol

Amelard
et al. 2021
[21]

22 17 5 TCN HR, HRR, RF, VE Smart shirt One ramp-
incremental,
PRBS protocol

Our study 140 100 40 TFN Gender, age, height,
weight, workload,
HR, HRR, VT

Vyntus CPX,
Cortex Metalyzer

Incremental exer-
cise

Altini et al. [22] and Shandhi et al. [23] employed the Leave-One-Out Validation (LOOV) technique to
evaluate their models. On the other hand, Zignoli et al. [20] trained their model using two protocols per
individual and then tested it on a distinct protocol for each person.

Altini et al. were among the first to use accelerometer (ACC) and HR sensor data to estimate instantaneous
¤VO2 during various daily activities, including lying, sitting, walking, biking, and running. By leveraging support
vector machine (SVM), they developed a range of models specifically tailored to estimate instantaneous ¤VO2
during different activities [22]. However, the need to create models for each activity posed a challenge in terms of
universality and practical application. Then, Cook et al. designed a mathematical algorithm combining HR with
the integral of absolute acceleration (IAA) to estimate instantaneous ¤VO2 [30]. The reliance on a mathematical
framework may introduce biases and limit the model’s ability to reflect the complexity of real-world data.
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To make the model more applicable in different exercises, Shandhi et al. utilized a custom-built wearable patch
placed on the mid-sternum to collect seismocardiography (SCG), electrocardiogram (ECG), and atmospheric
pressure (AP) signals from 17 adults using a treadmill protocol within a controlled setting, as well as an outdoor
walking protocol in an uncontrolled environment [23]. Later, they trained the eXtreme Gradient Boosting
(XGBoost) models on one protocol of each person and validated the data from the other protocol and vice versa.

Moreover, neural networks demonstrate a robust ability to learn features directly from raw data. As a result,
there are also studies employing Long Short-Term Memory (LSTM) networks to estimate ¤VO2 [20]. This study
collected the HR, breathing frequency (BF), mechanical power output (P), and pedaling cadence (𝜔) of 7 amateur
cyclists in 3 protocols (two arbitrary protocols and the Wingate test). However, this study relied on a power
meter rather than a wearable sensor, restricting its applicability to cycling. During the process, Two protocols of
each person are used as the training set, and the remaining protocol is used as the test set.

Amelard et al. conducted the first research using temporal convolutional network (TCN) to predict ¤VO2 based
on the smartshirt data, showcasing the capabilities of deep learning in predicting instantaneous ¤VO2 [21]. They
first collected smart shirt data (HR, HR reserve, BF, and minute ventilation (VE)) from 22 adults. Based on the
temporal behavior of the data, they tried to train a TCN on 17 adults and test the model on the rest 5 adults [21].
This work shows the great power of deep learning in prediction the instantaneous ¤VO2.

In summary, while existing methods have significantly advanced the instantaneous ¤VO2 estimation, it is
important to acknowledge that they have some limitations. Firstly, they ignored the physical and anthropometric
features of each individuals, which are critical determinants of ¤VO2. Furthermore, although Frade et al. [25]
employed SHAP to elucidate the input variables of their ¤VO2 max prediction model, there is a notable scarcity of
research that similarly addresses the interpretability of input variables in the prediction of instantaneous ¤VO2
Moreover, the reliance on small datasets tends to assume a lack of diversity within the population studied.
To address these issues, as detailed in Table II, we have compiled a more extensive dataset comprising 140

participants, with 100 allocated for training and 40 for testing. Our objective is to integrate both anthropometric
(such as gender, health status, age, height, weight) and temporal features (such as workLoad, HR, HRR, BF, VT)
collected from wearable devices into a deep learning model capable of making accurate ¤VO2 estimation. We
have validated our model across diverse groups, including young and elderly participants as well as smokers and
non-smokers, to ensure that it performs well and possesses robust generalization capabilities.

2.3 Multi-horizon Estimation Models
In multi-horizon estimation tasks, the challenges often arise from the complex amalgamation of various inputs.
These inputs comprise static covariates, including attributes like height and weight, which remain constant
throughout the time series. Additionally, future inputs such as workLoad are known in advance, while exogenous
time series data, such as HR, BF, and VT, are solely available in historical records. However, in these scenarios, a
common issue is the absence of prior knowledge about the relationships and interactions among these inputs
and the target variable such as ¤VO2.
To solve this, various deep learning methods have emerged to address this task, including methods such as

autoregressive models and sequence-to-sequence models. Autoregressive methods have been widely used in this
field [31–33]. They capture the dependencies within a time series by regressing the current value on its past
values. Some methods such as DeepAR [31] and Deep State-Space Models (DSSM) [32] employ LSTM networks
to capture temporal patterns and dependencies, enabling them to generate probabilistic estimate with measures
of uncertainty. Some transformer-based methods used the Convolutiuonal Neural Network (CNN) as the local
processing for the forecasting [33]. They offer the advantage of capturing temporal patterns and trends in the
data. However, autoregressive methods may necessitate either stable (stationary) data or data that becomes stable
through differencing.
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Sequence-to-sequencemodels, on the other hand, differ in that they are trained to explicitly produce forecasts for
multiple predetermined horizons at each time step, along with various techniques to generate future predictions.
The Multi-horizon Quantile Recurrent Forecaster (MQRNN) [34] adopts LSTM or CNN encoders to generate
context vectors that are subsequently fed into Multi-Layer Perceptrons (MLPs) specific to each forecasting horizon.
The Temporal Fusion Transformers (TFT) [35] combines the strengths of Transformers and LSTM networks to
capture temporal patterns and dependencies in time series data.

3 METHODS
¤VO2 kinetics exhibit complex temporal patterns in response to exercises, making it challenging to capture the
temporal information. To address this, we have developed a novel model called Temporal Fusion Network (TFN),
which aims to enhance interpretability and accuracy. Our TFN model consists of three main components: feature
selection, temporal extraction, and output generation. Inspired by [35], we built a feature embedding module that
combines and fuses the anthropometric and dynamic input information into the input embeddings. During the
training process, we dedicate an initial stage to continually updating the ratio of each parameter to elucidate the
relative importance of different variables within the model. Subsequently, we establish a temporal extraction
module that learns the temporal features of the input sequences. Lastly, the output generation component will be
learned to estimate the ¤VO2. In the following subsections, we present a detailed understanding of the method
implementation and model structure.

3.1 Data Collection and Preprocessing
3.1.1 Subjects. This study involved 140 participants (90 males, 50 females; 77 healthy, 63 smokers; height: 175.9
cm ± 2.9 cm weight; 75.7 kg ± 3.6 kg; age: 26.6± 2.7 years, 88% are Caucasians). Prior to participating in the study,
all subjects provided written informed consent and confirmed they had no cardiopulmonary conditions.

3.1.2 Data Collection. Metabolic measurements were obtained using the Vyntus CPX system (Vyaire Medical,
Hochberg, Germany) and the Cortex Metalyzer 3B system (Cortex, Leipzig, Germany) at Manchester Metropolitan
Institute of Sport, Manchester Metropolitan University, UK. These measurements included key parameters
such as ¤VO2, VT, and BF. Heart rate was continuously monitored throughout the assessment using the Polar
H7 tooth heart rate monitor (Polar, Kempele, Finland), ensuring accurate tracking of cardiovascular responses
during exercise. The assessments were conducted on a cycle ergometer, facilitating a controlled evaluation of the
participants’ metabolic responses during incremental exercise.
Prior to testing, participants underwent a thorough medical screening to confirm their suitability for high-

intensity exercise. They were instructed to adhere to a pre-test protocol, which required them to refrain from
engaging in strenuous physical activity, consuming caffeine, and eating large meals for at least three hours before
the assessment.
The testing protocol began with a five-minute rest period to effectively prepare participants physically and

mentally for the upcoming challenge. After the rest period, the main testing phase began, characterized by
a gradual increase in workload of 20 watts every two minutes, starting with an initial 0 watt workload. This
progressive approach continued until each participant reached their ¤VO2 max, providing a comprehensive
understanding of their metabolic function and exercise capacity.

After the test is completed, post-test procedures include a carefully monitored two-minute cool-down period,
which is critical to ensure the safe recovery of the participant. Subsequent data analysis is conducted to accurately
determine the instantaneous ¤VO2 values as well as ¤VO2 max, which was determined as the average ¤VO2 values
recorded during the last 15s at peak exercise work rate. ¤VO2 max was attained by the participants achieving the
following criteria for maximal effort: A RER > 1.10, and HR >90% HRmax predicted for age [36]. Participants
maintained a constant cadence of 60 rpm and the test was terminated when the subject was unable to continue
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or maintain > 60 rpm cadence. Throughout the testing process, stringent safety protocols are upheld to ensure
any adverse reactions are addressed immediately, maintaining the highest standards of participant safety and test
integrity.

3.1.3 Data Preprocessing. In the initial stages of raw data preprocess, we compute the mean 𝜇𝑖 and standard
deviation 𝜎𝑖 of the variables for i-th participant across the temporal dimension. Subsequently, we remove the
data points that fall below the threshold of 𝜇𝑖 − 2 ∗ 𝜎𝑖 and above the threshold of 𝜇𝑖 + 2 ∗ 𝜎𝑖 . Upon cleaning the
data, these significant outliers were excised from the dataset to ensure the integrity of further data processing
steps. Following the removal of outliers, we implemented a data sampling strategy to systematically select
representative data points. This was achieved by resampling each point at regular two-second intervals, utilizing
linear interpolation to estimate missing values where necessary.
While the aforementioned steps have addressed the issue of obvious outliers, there remained the possibility

of less apparent anomalies or noise within the data. To tackle this, we employed a data smoothing technique
rolling window. Specifically, a window size of two was chosen to average the data points within each window,
effectively reducing short-term fluctuations and highlighting longer-term trends or cycles. Suppose we have a
time series 𝑥 = 𝑥1, 𝑥2, ..., 𝑥𝑛 and we want to apply a rolling window of size 𝑘 . Then the smoothed value 𝑦𝑖 at time
𝑖 can be calculated as:

𝑦𝑖 =
1
𝑘

𝑘−1∑︁
𝑗=0

𝑥𝑖− 𝑗 (1)

Unlike previous methodologies that collect data within a fixed temporal span [21, 23], thereby enforcing
uniform exercise and rest durations for all subjects, our data collection approach embraces individual variability
in time lengths. An illustrative example of this variability can be observed in the gender-based discrepancy where
men often require more time than women to attain their ¤VO2 max.

The average test duration per participant in our dataset is 762 seconds. To enhance the dataset and standardize
the input size for our model, we employ a sliding window approach. In our specific experiments, we denote the
sequence length of the input variable for an individual as 𝑆𝑖 , where 𝑖 represents the unique identifier of that
individual. We utilize a sliding window of length 𝑒 = 200 seconds with a moving step of half the window size,
specifically 100 seconds. This configuration allows us to generate a substantial number of windowed datasets. As
a result, we obtain 𝑆𝑖 − 𝑒 + 𝑒

2 time span samples for each individual 𝑖 . This method not only expands our dataset
but also effectively addresses the inherent variability in sequence lengths across the dataset.
To ensure a robust evaluation of our model, we employed a stratified sampling method based on different

age groups, dividing our dataset into homogeneous subgroups, each representing a decade of age. Specifically,
we divided our dataset into homogeneous subgroups based on different age groups (one age group for every 10
years old). We then split each subgroup into a training dataset and a test dataset, maintaining a ratio of 0.7 to 0.3
respectively. This stratified approach ensures that our training and testing sets accurately and comprehensively
reflect the overall age distribution of our dataset, allowing us to better evaluate the performance of our model
across different age groups.

Finally, we employ standard normalization to normalize the continuous variables, which include BF, HR, HRR,
VE, VT. This normalization process effectively removes the mean and scales the data to unit variance, thereby
facilitating more efficient model training and enhancing convergence speed. Concurrently, we utilize ordinal
encoding [37] to convert categorical variables, such as ID, status, height, weight, gender, and age, into integer
representations. This preprocessing step is crucial for improving both the performance and interpretability of the
model in subsequent analyses, ensuring that all input features are adequately prepared for integration into the
machine learning framework.
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3.2 Sequence Modeling
Before defining the network structure, we highlight the nature of the multi-horizon forecasting sequence modeling
task. Consider a set of time-series input sequences 𝑋 𝑖 = 𝑥𝑖1, 𝑥

𝑖
2, . . . , 𝑥

𝑖
𝑡 , . . . , 𝑥

𝑖
𝑇
∈ R𝑑 , 𝑖 ∈ {0, 1, 2, ..., 𝑛}. 𝑛 represents

the number of input variable types. It can either include both dynamic and anthropometric data (n=12) or only
dynamic data (n=6). Each input sequence, denoted as 𝑋 𝑖 , is composed of 𝑇 timesteps, with each timestep 𝑡

having as associated 𝑑 dimension vector 𝑥𝑖𝑡 After feature selection, the combined embedded inputs formed by
concatenating both the anthropometric variables and dynamic variables:

𝑥1, 𝑥2, . . . , 𝑥𝑇 = concat
(

𝑛⋃
𝑖=0

{𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑇 }
)

(2)

After the concatenation, the model M aims to estimate the ground truth sequence of ¤VO2 values denoted
as ¤VO2 : ¤VO2(1) , ¤VO2(2) , ¤VO2(3) , . . . , ¤VO2(𝑇 ) values from the wearable input time-series 𝑥1, 𝑥2, . . . , 𝑥𝑇 , which is
formalized as follows,

¤̂VO2 = M(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑇 ) (3)

The training process aims to minimize the divergence between the model’s estimated ¤̂VO2 outputs and the
actual ¤VO2 values.

3.3 Model Architecture
Our TFN model is based on the sequence-to-sequence model architecture, as shown in Fig. 1. In this section,
we describe our architecture primary parts: feature selection and temporal extraction for encoding the input
variables, and output generation for decoding the extracted information.

3.3.1 Feature Selection. We utilize entity embeddings [37] to encapsulate static variables (Gender, Age, Status,
Height, Weight), while we employ linear transformations to encode dynamic variables (HR, HRR, VT, BF,
WorkLoad). Let 𝑐 denote the transformed concatenated static variables, and let 𝜃𝑡 denote the transformed
concatenated dynamic variables corresponding to the input 𝑥𝑡 at time-step 𝑡 . To adequately combine the temporal
dependencies and dynamics within the input variables and select the important ones, we apply the variable
selection module GRN proposed by lim et al. [35] to the transformed concatenated input variables, followed by a
Softmax layer:

𝛾𝑡 = Softmax(GRN(𝜃𝑡 , 𝑐)) (4)

After incorporating the variable selection module, we acquire the input featuring weighted embeddings
𝛾𝑡 ∈ R𝑑 , where R represents the set of real numbers, 𝑡 denotes the time-step, and 𝛾𝑡 is a 𝑑-dimensional vector that
combines both static and dynamic information. This part helps to enhance model transparency while facilitating
the identification of key determinants among the input variables.

3.3.2 Temporal Extraction. In this part, temporal attributes are acquired through the implementation of sequence
modeling techniques. Within the domain, multiple investigations have employed RNN or CNN architectures as
encoders to capture the fundamental patterns in 𝛾𝑡 . In a manner akin to MQRNN [34], we employ two modules
within this section. One module adopts LSTM as the encoder to extract temporal information, while the other
module utilizes TCN as the encoder [38], serving the same purpose of capturing temporal characteristics. Both
TCNs and LSTMs have proven to be effective in various time series analysis tasks, such as speech recognition,
natural language processing, and sequential data forecasting. In our experiment, both structures show competitive
results. We will compare the results of these two modules on the test dataset in Section IV.
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Fig. 1. Schematic representation of the TFN model. Add & Norm represents the skip connection and layer normalization,
respectively. Multi-head represents the multi-head attention mechanism. The model consists of three main sections: Variable
Selection uses two separate networks to process anthropometric and dynamic variables from the input data. Temporal
Extraction uses a TCN or LSTM, and to understand patterns and importance over time. The final part, Output Generation,
uses a feed-forward network to estimate the ¤VO2 values.

We denote the TCN or LSTM model as Module. The Module receives 𝛾𝑡 and then extracts time-dependent
information in its respective encoding module, ultimately producing the transformed vector 𝜉𝑡 at time 𝑡 :

𝜉𝑡 = Module(𝛾𝑡 ) (5)

In order to enhance the efficiency of training, 𝛾𝑡 is connected to 𝜉𝑡 via a residual skip connection, which is
represented by ⊕. Subsequently, layer normalization is applied, yielding the refined temporal embedding denoted
as 𝜉𝑡 :

𝜉𝑡 = LayerNorm (Module(𝛾𝑡 ) ⊕ 𝛾𝑡 ) , (6)
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which facilitates gradient flow and lead to an effective model training. Subsequent to the normalization step, we
apply a multi-head self-attention layer, denoted as Atten to 𝜉𝑡 obtaining𝜓𝑡 as,

𝜓𝑡 = Atten(𝜉𝑡 ). (7)

The utilization of multi-head attention allows the model to effectively capture the relationships between
different positions within the sequence 𝜉𝑡 . In our setup, to capture a richer representation of the data, we
employed two heads in the multi-head attention mechanism.

In a manner consistent with previous steps, we integrate a skip connection to merge the temporal embeddings
𝜓𝑡 and 𝜉𝑡 . Then, it is followed by a normalization process to align with the procedure outlined in (6) to get the
extracted high-level feature representations𝜓𝑡 ,

𝜓𝑡 = LayerNorm(𝜉𝑡 ⊕ Atten(𝜉𝑡 )) (8)

By employing the aforementioned approach, we ensure the stability and effectiveness of the model’s training
process. Regarding the implementation phase, the details of the model’s parameters design are elaborated in
Section IV.

3.3.3 Output Generation. After processing and transforming the input data through variable selection and
temporal extraction parts,𝜓𝑡 are passed to the final Feed-Forward Network (FFN) to get the transformed output
𝜙𝑡 . The FFN contains two fully-connected layers that act as a non-linear regressor, projecting the encoded
multi-dimensional feature space onto the target space of ¤VO2 values.
Following a similar approach as in the temporal extraction part, we obtain a transformed representation,

𝜙𝑡 , by incorporating residual skip connections and layer normalization techniques. These techniques facilitate
establishing connections between 𝜙 and𝜓𝑡 , enhancing the integration and stability of the data transformation
process.
Finally, a linear layer is utilized to output the estimated ¤̂VO2𝑡 values:

𝜙𝑡 = LayerNorm(𝜓𝑡 ⊕ FFN(𝜓𝑡 ))
¤̂VO2𝑡 = Linear(𝜙𝑡 )

(9)

By fusing all available input information, the FFN performs the task of estimating ¤VO2 using the linear
layer. It ties together all the transformations performed by the preceding interpretable variable selection and
representation learning stages to distill them into informative ¤VO2 estimations.

3.4 Loss function
Quantile loss function is frequently employed in time series prediction scenarios where the objective is to estimate
an interval, or quantile, rather than a single point estimate. Specifically, the quantile loss function is designed to
estimate the 𝜏-th quantile of the conditional distribution of the response variable, where 𝜏 represents the desired
quantile level. By varying 𝜏 , the model can provide estimates with different levels of confidence, which can be
useful when dealing with uncertainty and variability in time series data.
The quantile loss at i-th timestep is expressed as,

𝐿𝜏 ( ¤VO2(𝑖 ) , ¤̂VO2(𝑖 ) ) = 𝜏 ∗max( ¤VO2(𝑖 ) − ¤̂VO2(𝑖 ) , 0)+

(1 − 𝜏) ∗max( ¤̂VO2(𝑖 ) − ¤VO2(𝑖 ) , 0).
(10)

To compute the total loss across all 𝑁 timesteps, the individual quantile losses are summed. Here, 𝑁 represents
the total number of timesteps, 𝜏max denotes the total number of quantiles, and the double sum spans all timesteps
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Fig. 2. For each specific anthropometric variable, the mean ¤VO2 value was calculated within each group. These calculations
revealed noticeable disparities between the groups, indicating the distinct influence of each variable on ¤VO2 values.

𝐼 and quantiles 𝜏 , as demonstrated in Equation (11).

𝐿𝜏 ( ¤VO2, ¤̂VO2) =
𝜏max∑︁
𝜏=1

𝑁∑︁
𝑖=1

𝐿𝜏 ( ¤VO2(𝑖 ) , ¤̂VO2(𝑖 ) )
𝑁𝜏max

(11)

Quantile loss allows the model to assess estimates over a range of possible outcomes, which can provide more
information than a simple point estimation assessment. We use three various percentiles (e.g., 10th, 50th, and
90th) at each timestep, which means the 𝜏 = 0.1, 0.5, 0.9. Ultimately, we employ the output values corresponding
to the 50th percentile (𝜏 = 0.5) as our final outputs, capturing the central tendency of the distribution while
accounting for the uncertainty inherent in the estimation.

3.5 Evaluation Metrics
We employ the Root Mean Square Error (RMSE) and the R-squared (𝑅2) as evaluation metrics. Let ¤VO2(𝑖 ) be the
true value and ¤̂VO2(𝑖 ) be the estimated value at the 𝑖-th timestep, the RMSE can be calculated from,

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

( ¤VO2(𝑖 ) − ¤̂VO2(𝑖 ) (12)

Here, 𝑛 = 140, which corresponds to the number of participants. The MAE is defined as:

MAE =
1
𝑛

𝑛∑︁
𝑖=1

| ¤VO2(𝑖 ) − ¤̂VO2(𝑖 ) | (13)
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Fig. 3. The original dataset was divided into training and test sets with a ratio of 7:3. Subsequently, 10-fold cross-validation
was conducted on the training set to identify the optimal model. Finally, the selected model was fine-tuned and validated
using the test set.

𝑅2 provides a quantitative measure of how well the estimated ¤̂VO2 values from a model align with the actual
values ¤VO2. It is defined as the proportion of the variance in the dependent variable (in this case, the true ¤VO2)
that is explained by the independent variable(s) (in this case, ¤̂VO2). A higher 𝑅2 indicates a better fit of the model
and suggests that the model can better explain the variation in the data. Firstly, we calculate the mean of the true
¤VO2 values, denoted as 𝑐:

¤VO2 =
1
𝑛

𝑛∑︁
𝑖=1

¤VO2(𝑖 ) (14)

Compute the total sum of squares (TSS), which is the sum of squares of the difference between the true ¤VO2

value and ¤VO2, to quantify the total variance in the data as,

𝑇𝑆𝑆 =

𝑛∑︁
𝑖=1

( ¤VO2(𝑖 ) − ¤VO2)2. (15)

Then, calculate the residual sum of squares (RSS), which is the sum of squares of the difference between the
true ¤VO2 value and the ¤̂VO2 value. This measure quantifies the variance that the model fails to explain,

𝑅𝑆𝑆 =

𝑛∑︁
𝑖=1

( ¤VO2(𝑖 ) − ¤̂VO2(𝑖 ) )2 (16)

Finally, based on the (15) and (16), we could calculate 𝑅2 using the formula:

𝑅2 = 1 − 𝑅𝑆𝑆

𝑇𝑆𝑆
(17)
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Fig. 4. We present four optimal scenarios across different age groups selected for comparison. The TFCN (orange) and
TFLSTM () demonstrate superior performance in estimating the true ¤VO2 values (black) compared to the TCN (green) and
LSTM (gray) models. It is noteworthy that all four models were trained on the same datasets, which included both dynamic
and anthropometric variables.

3.6 Validation Experiments
To further validate the effectiveness of our approach, we conducted two experiments, one of which employed
10-fold cross-validation, as illustrated in Fig. 3. Initially, the dataset was divided into training and test subsets
in a 70:30 ratio, with 70% for training and 30% for testing. This division followed the age stratification of the
participants to ensure representative subsets. Subsequently, we performed 10-fold cross-validation on the training
set, partitioning it into 10 folds. For each fold, the model was trained on 9 folds while being validated on the
remaining fold. Throughout this process, we assessed various model configurations and hyperparameters to
identify the best-performing model. Upon determining the optimal model and its associated hyperparameters, we
fine-tuned the model using the entire training set. Finally, we evaluated the model’s performance on the separate
test set, providing an unbiased estimate of its effectiveness on unseen data and ensuring the robustness of our
results.

Additionally, we conducted two separate ablation studies. The first study investigated the impact of introducing
various levels of noise to the original dataset on the model’s predictive performance. The second study examined
the influence of incorporating anthropometric data as input variables on the model’s overall effectiveness.
Together, these studies provide valuable insights into how both noise and anthropometric factors affect model
performance.
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3.7 Model Optimization
The optimization process employs the Adam optimizer, selected for its efficiency in managing sparse gradients
and its adaptive learning rate capabilities, which facilitate effective training across various data distributions. Both
the TCN and LSTM modules are configured with two layers, enabling the model to capture complex temporal
dependencies inherent in the data. The training regimen spans 50 epochs, utilizing a learning rate of 0.01 and a
batch size of 64, which together enhance the model’s convergence while maintaining computational efficiency. To
mitigate the risk of overfitting, a dropout rate of 0.1 is incorporated as a regularization technique. Additionally, an
embedding dimension of 16 is utilized to represent categorical features in a continuous space, and the inclusion
of two attention heads further enriches the feature representation, allowing the model to focus on relevant
information within the input sequences. This comprehensive configuration is designed to optimize the model’s
predictive performance in time-series forecasting tasks.

4 RESULTS

4.1 Static Variables Distribution
The distribution of static variables in the entire dataset is presented in Fig. 2, which illustrates themean distribution
of the ¤VO2 variable with respect to various anthropometric parameters, including gender, age, status, height,
weight, and BMI. The figure provides a visual representation of these anthropometric data characteristics,
facilitating a more comprehensive understanding of the dataset.

The proposition that ¤VO2 is influenced by age, attributed to the decrease in metabolically active tissue associated
with aging, has been in consideration since 1988 [39]. Concurrently, sports scientists began to recognize the
effect of factors such as gender, weight, and BMI on ¤VO2 [40]. This is intuitively comprehensible, as a larger body
necessitates a greater oxygen supply for its functioning. Moreover, empirical observations have revealed that, on
average, males tend to exhibit higher ¤VO2 ranges compared to females. Furthermore, it has been observed that
individuals who are in good health tend to demonstrate higher ¤VO2 values in comparison to smokers. Due to
the significant relationship between static variables and ¤VO2, they were utilized into early methodologies for
constructing estimations of ¤VO2.
Therefore, our proposed model leverages static variables as informative priors for the model, which are then

integrated with dynamic variables. This integration enables the model to enhance its capabilities in estimating
the ¤VO2 levels of diverse individuals.

Table 3. Comparison of RMSE(𝐿/𝑚𝑖𝑛), MAE(𝐿/𝑚𝑖𝑛), and R2 for different methods

Methods R2 ↑ RMSE ↓ MAE ↓
TCN 0.81 0.12 0.23
Stacked LSTM 0.82 0.10 0.22
Base TFCN 0.85 0.07 0.19
Base TFLSTM 0.86 0.06 0.19
TFCN 0.91 0.03 0.14
TFLSTM 0.92 0.03 0.13
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Fig. 5. The four figures illustrate the Bland-Altman analysis for the four age groups. The dotted horizontal line indicates the
95% consistency limit, while the red dotted line denotes the prediction deviation. The deviation values for each of the four
figures are included in the titles. Different colors in the figures represent data from various participants within the test set.

4.2 Comparison with other methods
In prior research, various studies have explored the utilization of LSTM and TCN for the estimation of ¤VO2
[20, 21]. However, a conspicuous gap in the literature is the lack of available code for these models, thereby
limiting comparative analysis of their performance. In this study, we implemented the LSTM and TCN model
used in [20, 21] for comparing the performances of different methods. For our TFN model, we used two distinct
models were used for this purpose:

• the "Base model": the model designed to use only dynamic variables inputs.
• the "model": the model formulated to use both dynamic and anthropometric variables as inputs.

Additionally, we employ TCN and LSTM as the fundamental modules for the Temporal Extraction part of our
model. Consequently, we construct two distinct models, named TFCN and TFLSTM, by incorporating TCN and
LSTM, respectively, in the Temporal Extraction part.
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Table 4. Variables Importance Rank

(a) Variables Importance in TFCN

Anthropometric
Variable

Importance Dynamic
Variable

Importance

Height 0.24 VT 0.28
Weight 0.24 WorkLoad 0.21
Status 0.19 BF 0.19
Sex 0.17 HRR 0.17
Age 0.16 HR 0.15

(b) Variables Importance in TFLSTM

Anthropometric
Variable

Importance Dynamic
Variable

Importance

Age 0.22 VT 0.27
Height 0.21 BF 0.24
Sex 0.21 WorkLoad 0.21
Weight 0.19 HRR 0.15
Status 0.17 HR 0.13

As shown in Fig. 3, we initially performed 10-fold cross-validation [41] on 70% of the training set, resulting in
an average model performance of R2: 0.95 ± 0.01, RMSE: 0.18 ± 0.01, and MAE:0.13 ± 0.01. Based on these results,
we identified the best-performing model and subsequently retrained it using the entire training dataset. We then
compared the performance of our models with other methods on an independent test set. The performance of
all models is evaluated based on MAE, RMSE, and R2 values, as shown in Table 3. Among the various methods
tested, our TFN model, particularly the TFLSTM model, exhibited state-of-the-art performance. We evaluated
all the models on the 40 testing files. Fig. 4 shows the good scenarios in different age groups, TFN shows the
robustness compared with other models. In addition, we performed a Bland-Altman analysis on the test set. As
shown in Fig. 5, the results show that our model achieves more than 95% consistency in the four age groups in
the test set.
In Fig. 4, it can be observed that TCN and Stacked LSTM models exhibit higher susceptibility to noise,

resulting in some erroneous estimations (e.g. in the 100-200 time period of Example 1). Conversely, our proposed
models, TFLSTM and TCN, demonstrate enhanced robustness in the presence of noise, leading to more accurate
performance. Our model improved resilience to noise-induced fluctuations, thereby yielding more reliable and
precise results.

4.3 Variables Interpretation
Apart from superior accuracy, our model offers explanatory insights into anthropometric and dynamic variables,
the weights are obtained by part Feature Selection. By averaging each variable’s importance through all partic-
ipants, we get the importance value assigned to each input variable serves as a measure of its significance to
the final ¤VO2 values estimations. Table 4a and Table 4b present the respective variable importance rankings for
the TFCN and TFLSTM models. These tables highlight the significance and contribution of different variables
within each model, providing valuable insights into the relevance of the variables in the context of the models’
performance.
Among the five static variables analyzed, their importance scores consistently hover around 0.2, indicating

that each variable contributes equally to the model’s predictive capacity. This finding further corroborates the
insights presented in Fig. 2, which illustrates that the various static variables possess significant prior knowledge
regarding the dataset. In both models, the dynamic variable VT demonstrates the highest importance, with values
of 0.28 in the TFCN model and 0.27 in the TFLSTMmodel. This prominence of VT surpasses that of other dynamic
variables in contributing to the final predictions. Such findings indicate a robust relationship between VT and the
estimation of ¤VO2, thereby underscoring its critical significance in the realm of exercise physiology.
Other variables such as BF and WorkLoad maintain moderate importance across both models (ranging from

0.15 to 0.24). This indicates that while they may not be the strongest predictors, they still contribute significantly
to the models’ predictive capabilities.
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Fig. 6. The figure depicts the effects of four different types of noise on continuous data over time. The orange line represents
the original continuous variable, while the line illustrates the variable after noise has been added.

In summary, the observations from analyzing the weights and importance values assigned to each variable in
the model demonstrate its ability to provide quantifiable explanations for the model’s performance. This level
of interpretability is crucial, as it allows researchers to verify that the model is operating as expected based on
domain knowledge.

4.4 Ablation Study
In this section, we examine the impact of anthropometric variables on the performance of our models, specifically
the TFCN and TFLSTM. As illustrated in Table 3, the inclusion of anthropometric variables results in performance
enhancements for both models.

The integration of these variables provides prior knowledge to the TFN models, leading to a reduction in RMSE
of 0.04 𝐿/𝑚𝑖𝑛 for the TFCN model and 0.03 𝐿/𝑚𝑖𝑛 for the TFLSTM model. Additionally, the MAE is reduced by
0.05 𝐿/𝑚𝑖𝑛 for both the TFCN model and 0.06 𝐿/𝑚𝑖𝑛 for TFLSTM models. Correspondingly, the 𝑅2 for both of
the modes improves by 0.06. To substantiate these improvements, we conducted Wilcoxon signed-rank test on
the 𝑅2, RMSE, and MAE values of the models with and without anthropometric variables. Since we performed
multiple tests for three different evaluation metrics, we applied Bonferroni correction to adjust the significance
threshold, setting the adjusted threshold to 𝛼 = 0.05

3 ≈ 0.0167. The null hypothesis was rejected only when the
p-value was less than this adjusted threshold, leading to the updated reported p-values. The resulting p-values
for the TFCN model were (5.62𝑒 − 04, 1.87𝑒 − 05, 7.18𝑒 − 05), and for the TFLSTM model, the p-values were
(2.41𝑒 − 04, 3.85𝑒 − 05, 1.03𝑒 − 04). These results indicate that the observed changes in performance metrics
are statistically significant, clearly demonstrating substantial performance improvements attributable to the
inclusion of anthropometric variables. Furthermore, detailed graphical Fig. 7 reveal that the models incorporating
anthropometric variables demonstrate performance metrics that are closer to the actual values, underscoring the
relevance of these variables in enhancing model accuracy.
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Fig. 7. This figure compares the performance of two TFN models (TFCN; TFLSTM), both with and without the inclusion of
anthropometric variables. The black line depicts the actual ¤VO2 values. Upon inspection, it is evident that the incorporation
of these variables facilitates a more accurate learning of the temporal behavior of ¤VO2.

Currently, the data utilized in our study is demonstrably of higher quality compared to data obtained from
wearable devices. Consequently, the effect of this disparity on actual performance remains uncertain. Wearable
sensors often produce data that is inherently noisy, and their accuracy can be compromised due to factors related
to both equipment limitations and environmental conditions. To address this issue and assess the robustness of
our model, we introduced noise to the dataset to simulate real-life scenarios.

Therefore, we introduced four distinct levels of Gaussian noise: 0.1, 0.15, 0.2, 0.3. The noise was generated from
a normal distribution with a mean of zero, which ensured that the introduction of noise did not systematically
bias the data. The results of this analysis are presented in Table 5, which outlines the impact of the added noise
on the model’s performance. Generally, when the noise level is less than or equal to 0.2, the performance of our
model remains robust. Specifically, the 𝑅2 values are consistently maintained within the range of 0.80 to 0.84
across different noise conditions in this interval. Additionally, both the RMSE and MAE metrics exhibit acceptable
levels of prediction error, with RMSE values ranging from 0.11 to 0.12 and MAE values from 0.23 to 0.26. This
consistency indicates that our model can effectively accommodate moderate noise levels while still delivering
reliable predictions, which is particularly important for applications where data quality may fluctuate. However,
as noise levels exceed 0.2, a noticeable decline in performance is observed, highlighting the need for careful
consideration of the impact of noise during model evaluation and deployment.

Table 5. Model Performance Under Various Noise Conditions

TFCN +Gau(0.1) +Gau(0.15) +Gau(0.2) +Gau(0.3)
R2 0.92 0.82 0.82 0.80 0.76
RMSE 0.03 0.11 0.12 0.12 0.13
MAE 0.13 0.25 0.25 0.26 0.28

TFCN +Gau(0.1) +Gau(0.15) +Gau(0.2) +Gau(0.3)
R2 0.94 0.84 0.83 0.82 0.79
RMSE 0.02 0.11 0.11 0.11 0.13
MAE 0.11 0.23 0.24 0.25 0.27
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5 DISCUSSION AND CONCLUSION
Our proposed model demonstrates the ability to take in CPET data of varying time lengths as input and produce
accurate ¤VO2 values along the time. Using a limited set of easy-to-measure features including VT, BF, HR,
HRR, and basic anthropometrics, the model achieves state-of-the-art performance. A key finding of this work
is the importance of incorporating anthropometric variables for precise ¤VO2 estimation, highlighting the need
to consider both physiological responses and individual characteristics for the future work. Meanwhile, the
parsimony of inputs required by our model (many of which can be collected via portable devices) suggests
promising applications for expanding ¤VO2 monitoring beyond laboratory settings.

For example, integration with a wearable spirometry like MiniSpir to gather VT and BF alongside smartwatch
collection of HR and HRR parameters could enable minimally-burdensome and affordable testing in field contexts.
This has implications for increasing access to ¤VO2 profiling, and enabling investigation of metabolic responses
under real-world conditions rather than confined laboratory protocols.
While prior work has predominantly focused on enhancing the model performance, many of these existing

methods can be characterized as "black-box" models that provide little insight into the relationships learned. In
contrast, our work applied a variable selection mechanism allowing the model to explicitly determine the relative
importance of different features. Such interpretability is valuable, as it provides useful insights for researchers in
the domain.
Overall, our results demonstrate the potential for interpretable AI to leverage wearable-accessible indicators

as a pathway to advancing non-exercise ¤VO2 assessment. With further validation and interface with adjunct
technologies, forecasting cardiorespiratory fitness from sparsely sampled signals collected during activities of
daily life may become feasible. We believe the current work presents an exciting step toward more transparent,
collaboratively optimized methods for ¤VO2 analyses in medical and health domains.

6 DATA AND CODE AVAILABILITY
The data utilized in this study is owned by Manchester Metropolitan University (MMU) and is not publicly
available. However, there is a formal agreement between KAUST and MMU allowing the use of this data for
the purposes of this publication. Additionally, the code employed for the analysis is accessible on GitHub at the
repository TFN-VO2. We encourage researchers to leverage these resources for further exploration and validation
of our findings.
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