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Abstract—Facing a vast amount of connections, huge per-
formance demands, and the need for reliable connectivity, the
sixth generation of communication networks (6G) is envisioned
to implement disruptive technologies that jointly spur connec-
tivity, performance, and reliability. In this context, this paper
proposes, and evaluates the benefit of, a hybrid central cloud
(CC) computing and mobile edge computing (MEC) platform,
especially introduced to balance the network resources required
for joint computation and communication. Consider a hybrid
cloud and MEC system, where several power-hungry multi-
antenna unmanned aerial vehicles (UAVs) are deployed at the
cell-edge to boost the CC connectivity and relieve part of its
computation burden. While the multi-antenna base stations are
connected to the cloud via capacity-limited fronthaul links,
the UAVs serve the cell-edge users with limited power and
computational capabilities. The paper then considers the problem
of maximizing the weighted network sum-rate subject to per-
user delay, computational capacity, and power constraints, so as
to determine the beamforming vectors and computation alloca-
tions. Such intricate non-convex optimization problem is tackled
using an iterative algorithm that relies on ℓ0-norm relaxation,
successive convex approximation, and fractional programming,
and has the compelling ability to be implemented in a distributed
fashion across the multiple UAVs and the CC. The paper results
illustrate the numerical prospects of the proposed algorithm for
enabling joint communication and computation, and highlight
the appreciable improvements of data processing delays and
throughputs as compared to conventional system strategies.

I. INTRODUCTION

Today’s Internet of Things (IoT) applications involve many
relevant consumer and industry use cases, e.g., smart cities,
modular plant, etc. For the next generation of wireless com-
munication systems, massive IoT is forecasted to make up
of 51% cellular IoT connections by 2027, while other use-
cases extend to augmented reality, vehicular to anything, etc.
[1]. With massively increased number of connected devices
and increased service requirements, massive IoT raises further
challenges towards the realization of the sixth generation of
communication networks (6G). Due to their finite energy and
computation resources, IoT devices are often dependent on
offloading their tasks, especially for computation-intensive
applications [2]. A suitable technique for satisfying such
massive data demand is the cloud-based network architecture,
which enables centralized management of communication and
computation resources. However, a drawback of cloud-based
networks is the long propagation delay [3] and the need for
costly, limited-capacity fronthaul links to connect the cloud to

the base stations (BSs). Moving computation and management
capabilities towards the network edge enables both latency
reduction and service quality enhancement. Such cost-efficient
and energy-saving paradigm, referred to as mobile edge com-
puting (MEC), is subject, however, to strict constraints on
power and computational resources. To this end, this paper
considers one particular hybrid network architecture, where
the central cloud connects to central BSs so as to serve
the central network users. The cell-edge users, on the other
hand, are served by resource-limited MEC devices, especially
deployed to boost the system connectivity. The paper then
adopts such a hybrid cloud/MEC architecture to empower joint
communication and computation by means of maximizing a
network-wide sum-rate, the performance of which is a function
of the allocated computation and communication resources.

The topic considered in this paper is related to the general
context of resource management in cloud-radio access net-
works [4]–[6], and MEC-based works focusing on computa-
tion [2], [7], [8] and communication [3], [9], [10]. Unmanned
aerial vehicles (UAV)-assisted MEC has been recognized
as a promising 6G network technique for allowing flexible
deployment, on-demand service, and enhanced connectivity
[3], [11], [12]. The utilization of UAVs, with typically strict
power constraints, calls for sophisticated joint management
of communication and computation resources in order to
optimize the system performance. Due to weak received power
and strong adjacent network interference, especially in the
prospective 6G ultra-dense deployment, cell-edge users are
often prone to inferior service quality, which makes the
development of communication and computation resource
management techniques vital. Related works in this field
include UAV-aided communication [9], [10] and computation
[7], [13] networks. These works, however, do not capture
the joint consideration of the communication and computation
aspects, i.e., constraint-wise and variable-wise, e.g., see [11].
As 6G communication networks are envisioned to include
multiple access technologies in a hybrid manner, the need to
consider the interplay of a central network and edge devices
arises. In contrast to related UAV-focused literature, e.g.,
[11], [12], [14], this work extends the joint communication
and computation paradigm toward hybrid cloud and MEC
networks. Further, in contrast to previous works on MEC
networks which adopt orthogonal access schemes, e.g., [15],
[16], this paper adopts a spatial multiplexing approach and



separates users using a beamforming strategy. Reference [4]
utilizes a similar approach for resource management under the
multi-cloud paradigm; however, the essential computation and
delay considerations are ignored in [4] which rather focuses
on mitigating the intra- and inter-cloud interference in a multi-
cloud setup in the absence of any MEC capabilities.

Unlike the aforementioned references, this paper proposes
a downlink hybrid cloud/MEC network, where several multi-
antenna BSs and UAVs serve single-antenna network users.
The BSs are connected to the cloud via capacity limited
fronthaul links, while the UAVs perform computation and
communication functions on their own. We address a sum-
rate maximization problem by jointly managing beamforming
vectors, allocated rates, and computation capacity, subject to
per-BS and per-UAV power, per-BS fronthaul capacity, per-
computing platform maximum computation capacity, and per-
user delay constraints. Such mixed discrete-continuous non-
convex optimization problem is tackled using ℓ0-norm relax-
ation, successive convex approximation (SCA), and fractional
programming (FP) resulting in a fully centralized protocol
(FCP) and in an efficient partially decentralized protocol
(PDP). Insightful simulations verify the gains of the proposed
network architecture in terms of sum-rate and delay. The
proposed decentralized algorithm is particularly shown to
overcome the centralized version in terms of computational
complexity, runtime, and scalability, as well as the fully
distributed protocol (FDP) in terms of sum-rate.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, we consider the downlink of a hybrid
cloud/MEC-based network architecture. Under such frame-
work, cloud processors (CPs) coordinate the users operations
within the core-network. The UAVs, on the other hand, with
on-chip computation capabilities, act as mobile edge com-
puters (ECs) to serve the cell-edge users. The core network
consists of a single cloud, i.e., the central cloud (CC), con-
nected via fronthaul links to B multi-antenna BSs, with Lc
antennas each, while the UAVs at the edge are equipped with
Le antennas each. The split of network functions follows a
data-sharing approach, where the CP at the CC performs most
network functions, e.g., encoding and precoder design, leaving
the modulation, precoding, and radio tasks to the BSs [5].
Fig. 1 shows an example of the considered system, which
illustrates a network of 2 BSs serving 4 central users, and 2
UAVs each serving one user. Let E be the number of deployed
ECs, and let E = {1, · · · , E} be the set of ECs. Since each
EC is implemented on a UAV, the edge network consists of E
UAVs. Note that throughout this work, the terms ECs and
UAVs are interchangeably used without loss of generality.
The set of BSs is given by B = {1, · · · , B}. The set of
single-antenna users is denoted by K = {1, · · · ,K}, where
K is the total number of users. In the context of CC and EC
coexistence, this paper assumes disjoint user-clusters, which
are covered by the user sets Kc ⊆ K and Ke ⊆ K, with
Kc ∩ Ke = ∅,∀e ∈ E and Ke ∩ K′

e = ∅,∀e ̸= e′. In other
terms, the set of users served by the CC is denoted by Kc,
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Coordination link
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Fig. 1: Network of 2 UAVs, 2 BSs, and 6 users.
while the set of users served by each EC e is denoted by Ke,
∀e ∈ E . Similarly, the CC serves Kc users, while EC e serves
Ke users. The determination of the sets Ke and Kc falls outside
the scope of the current paper, as it is often determined on a
different time-scale than the beamforming problem considered
in this paper.

We further denote the channel vector from BS b to user
k by hb,k ∈ CLc , and the channel vector from UAV e to
user k by h̃e,k ∈ CLe , where e ∈ E . The aggregate channel
vector from all BSs and UAVs towards user k is given by
hk = [hT

1,k, · · · ,hT
B,k, h̃1,k, · · · , h̃E,k]

T . For mathematical
tractability, the paper assumes full knowledge of channel state
information at the transmitters (CSIT).

The paper then aims at jointly managing the communica-
tion and computation network resources, which are captured
through the following list of variables:

• The beamforming vectors wb,k ∈ CLc and w̃e,k ∈ CLe ,
which denote the beamforming vector of user k’s signal
at BS b and at UAV e ∈ E , respectively.

• The computation vector f ∈ NK , which denotes the
allocated computation cycles to process the users data,
where each entry fk is given in cycles/s, ∀k ∈ K.

• The rate allocation vector r ∈ RK , which denotes the
achievable rates of all users, with r = [r1, · · · , rK ].

Note that wk = [wT
1,k, · · · ,wT

B,k, w̃
T
1,k, · · · , w̃T

E,k]
T is the

aggregate beamforming vector for user k. As per the user
association constraints, wk is group-sparse by design since k
may only be served by either CC or one EC. Additionally, in
the case when the CC serves the user k, not all BSs participate
in serving k, i.e., wb,k = 0Lc for some BSs b. We next
describe the expressions of the metrics relevant to the paper
context, mainly, the data-rates, the power consumption at the
BSs and at the UAVs, the users transmission delays, and the
computation capacity.

a) Achievable Rate: Each user receives its own intended
signal h†

kwksk, and treats all other users’ signals as interfer-
ence. This is captured in the signal to interference plus noise
ratio (SINR) of user k as

Γk =
|h†

kwk|2
σ2 +

∑
i∈K\{k} |h

†
kwi|2

, (1)

where σ2 is the additive white Gaussian noise variance. The
achievable rate of user k is then expressed as

rk ≤ τ log2(1 + Γk), (2)



where τ is the transmission bandwidth. Keeping all signals to
be transmitted by a BS b within the limits of the finite fronthaul
capacity Rmax

b , we write the fronthaul capacity constraint as∑
k∈K

∥∥∥∥wb,k

∥∥2
2

∥∥
0
rk ≤ Rmax

b , ∀b ∈ B, (3)

where the ℓ0-norm in (3) is a non-linear function that deter-
mines the number of non-zero elements. Hence, we determine
if a BS b serves user k solely based on the beamforming vector,
i.e., if b does not assign any power to serve k, the rate of k
does not contribute to BS b’s fronthaul link.

b) Power Consumption: This work distinguishes be-
tween two power consumption metrics: P cc

b , i.e., the power
consumed by BS b, and P ec

e , i.e., the power consumption of
EC e, which are defined respectively as:
P cc
b =

∑
k∈Kc

∥∥wb,k

∥∥2
2
, (4)

P ec
e =

∑
k∈Ke

∥∥w̃e,k

∥∥2
2︸ ︷︷ ︸

Transmission

+ se

(∑
k∈Ke

fk

)µe

︸ ︷︷ ︸
Computation

+ Qe︸ ︷︷ ︸
Operation

, (5)

where se and µe are constants that depend on the CPU model
[8]. The expressions in (4) and (5) denote that while the
BSs are assumed to have a maximum communication transmit
power constraint, the mobile ECs are subject to more elaborate
power constraints. Especially, we assume each EC to have
a maximum power consumption constraint, that consists of
transmit, computation, and operational power, see [8]. The first
two terms in (5) are directly coupled with beamforming and
computation variables, respectively, while the latter term Qe is
fixed, accounting for flight-related mechanical and operational
power.

c) Delay Considerations: The overall delay that each
user experiences is a function of the following components:

Θk = Fk/fk︸ ︷︷ ︸
Computation Delay

+ Λk︸ ︷︷ ︸
Fronthaul Delay

+ Dk/rk︸ ︷︷ ︸
Transmission Delay

, (6)

where Fk, Λk, and Dk denote the total computation cycles
required for user k’s task, the worst-case fronthaul delay of
all BSs serving k, and the data size for k, respectively. Note
that the fronthaul delay depends on the type of fronthaul
link in the network. More specifically, equation (6) consists
of a computation delay, i.e., the time it takes to process k’s
requested task, a fronthaul delay, i.e., the time-loss on the
fronthaul link, and a transmission delay, i.e., the latency during
the wireless data transfer. Note that for the delay of user k
served by EC e, i.e., if k is an edge-user, the fronthaul delay
is rather negligible, and is ignored in the context of our paper.

d) Computation Capacity: In this paper, each compu-
tation platform (i.e., CC or EC’s) is subject to a specific
maximum computation capacity constraint as follows:∑

k∈Kc
fk ≤ fmax

c ;
∑

k∈Ke

fk ≤ fmax
e , ∀e ∈ E , (7)

where fmax
c and fmax

e denote the CC’s and EC e’s capacity,
respectively.

A. Problem Formulation

Given the above considerations, the paper then aims at
maximizing a weighted sum-rate by managing the beamform-
ing vectors, allocated rates, and computation allocation. The

mathematical formulation of the considered problem can then
be written as follows:

max
w,r,f

∑
k∈K

αkrk (8)

s.t. (1), (3), (5), (7),
rk ≤ τ log2(1 + Γk), ∀k ∈ K, (8a)∑

k∈Kc

∥∥wb,k

∥∥2
2
≤ Pmax

b , ∀b ∈ B, (8b)

P ec
e (w, f) ≤ Pmax

e , ∀e ∈ E , (8c)
Fk/fk +Dk/rk ≤ tk − Λk, ∀k ∈ Kc, (8d)
Fk/fk +Dk/rk ≤ tk, ∀k ∈ Ke,∀e ∈ E . (8e)

where αk is the fixed weight associated with rk, w =
[wT

1 , · · · ,wT
K ]T , and f = [f1, · · · , fK ]T . Problem (8)’s feasi-

ble set is defined by the fronthaul capacity constraint per BS
(3) (non-convex, mixed-integer), the maximum computation
capacity per cloud (7) (convex), the achievable rate per user
(8a) (non-convex, fractional), the maximum transmit power
constraint per BS (8b) and per UAV (8c) (convex), the de-
lay constraint per CC’s users (8d) and per ECs’ users (8e)
(convex), where tk denotes the maximum tolerable delay per
user. Due to the nature of the ℓ0-norm, and the non-convexity
of the feasible set, problem (8) is a mixed-integer non-convex
optimization problem. As such problems are generally difficult
to solve, our paper next proposes a series of problem refor-
mulations so as to devise a numerically practical algorithm to
solve problem (8).

III. PROPOSED ALGORITHM

Given the numerical intricacies of problem (8), the paper
now proposes a practically feasible algorithm, the highlight
of which is its ability of being implemented in a distributed
fashion across both the CC and the ECs. Initially, the mixed-
integer nature of constraint (3) is tackled using a heuristic
ℓ0-norm approximation. Subsequently, SCA finds a convex
upper-bound to tackle the non-convex nature of the relaxed
constraint (9). After introducing an auxiliary variable, FP
decouples the numerator and denominator in (1). Each step
introduces auxiliary variables, which either contribute to the
set of optimization variables, or are updated in an outer loop.
We next present each of the above optimization formulations
in details.

A. User-to-BS Clustering
To tackle the discrete structure of the ℓ0-norm in (3), we

utilize a heuristic ℓ1-norm approximation with fixed weights
in each iteration as∑

k∈K
βb,k

∥∥∥∥wb,k

∥∥2
2

∥∥
1
rk ≤ Rmax

b , ∀b ∈ B, (9)

where the weights are defined as βb,k =
(
δ +

∥∥w′
b,k

∥∥2
2

)−1
,

with δ > 0 and w′
b,k denotes the beamforming vector from the

last iteration [6]. Due to the inverse relationship between βb,k

and w′
b,k, BS-user-links with low allocated power are likely to

be deactivated, as high weights pose a burden on the limited
capacity fronthaul link. Naturally, only BS-user-links, with
reasonable allocated power, remain active at the end of the al-
gorithm. Such formulation enables the opportunity to introduce
an auxiliary variable qb,k = βb,k

∥∥∥∥wb,k

∥∥2
2

∥∥
1
, so as to obtain a

bilinear formulation of (9)’s left hand side as qb,krk. Define the



aggregate vector q as q = [q1,1, · · · , q1,K , q2,1, · · · , qB,K ]T .
To be able to apply the SCA framework, e.g., see [4], write
qb,krk as qb,krk ≜ 1

4 ((qb,k + rk)
2 − (qb,k − rk)

2
). Using the

SCA approach enables us to replace its concave part, i.e.,
− (qb,k − rk)

2, using the linear first-order Taylor expansion.
The reformulated fronthaul capacity constraint (3) becomes∑

k∈K

(
(qb,k + rk)

2 − 2
(
q′b,k − r′k

)
(qb,k − rk)

+
(
q′b,k − r′k

)2 ) ≤ 4Rmax
b , ∀b ∈ B. (10)

Here q′b,k and r′k denote feasible fixed values, i.e., the optimal
optimization variables of the previous iteration. Similar to βb,k,
q′b,k and r′k are updated after each iteration. At this point, (10)
is a convex constraint and problem (8)’s non-convexity solely
stems from the achievable rate constraint (8a).

B. Auxiliary Variables
The highly coupled and fractional SINR expression (1)

within the concave logarithm in constraint (8a) prevents from
finding solutions to problem (8) efficiently. We, therefore,
introduce an auxiliary variable for reformulating the compli-
cated constraint (8a) as γ = [γ1, · · · , γK ]T . The reformulated
problem, by including the auxiliary variable γ and the relaxed
fronthaul constraint (10), is mathematically formulated as

max
w,r,f ,q,γ

∑
k∈K

αkrk (11)

s.t. (1), (5), (7), (8b) − (8e), (10),
rk ≤ τ log2(1 + γk), ∀k ∈ K, (11a)
γk ≤ Γk, ∀k ∈ K, (11b)
βb,k

∥∥∥∥wb,k

∥∥2
2

∥∥
1
≤ qb,k, ∀b ∈ B,∀k ∈ K. (11c)

Note that both (11a) and (11c) are convex constraints, and so
constraint (11b) remains the main reason for the non-convexity
of problem (11), and is therefore tackled next in the text.
C. Fractional Programming and Algorithm

Based on the general FP framework developed in [17,
Theorem 2], we now apply the quadratic transform in a
multidimensional and complex form to decouple the numerator
and the denominator of the fractional constraint (11b) as

gk(w) = γk − 2Re
{
u†
kw

†
khk

}
+ |uk|2

[
σ2 +

∑
i∈K\{k}

|h†
kwi|2

]
, (12)

where u = [u1, · · · , uK ]T is a vector of complex-valued
auxiliary variables. Note that (12) is a convex function of the
beamforming vector, in case u is fixed. The optimal uk for
fixed w can be written as

u∗
k = w†

khk

[
σ2 +

∑
i∈K\{k}

|h†
kwi|2

]−1

, (13)

which is obtained by setting the partial derivative of gk(w)
with respect to uk to zero and then solving for uk. Hence,
under all previously mentioned reformulations and manip-
ulations, the original problem (8) is approximated by the
following computationally tractable optimization problem

max
w,r,f ,q,γ

∑
k∈K

αkrk (14)

s.t. (5), (7), (8b) − (8e), (10), (11a), (11c),
gk(w) ≤ 0, ∀k ∈ K. (14a)

As the objective (14) is linear and the constraints define a con-
vex set, problem (14) is a convex optimization problem, which

Algorithm 1 Centralized Protocol for Resource Management

1: Initialize w to feasible values
Repeat: until convergence

2: Update βb,k, q′b,k, and r′k as in III-A; update u∗ using (13)
3: Solve convex optimization problem (14)
4: End

can be solved efficiently [18]. More specifically, the solution is
now computed in an iterative manner, via alternating between
solving problem (14) and updating the auxiliary variable u,
the weights βb,k, and the feasible fixed values q′b,k and r′k,
∀b ∈ B, ∀k ∈ K. The detailed steps of the FCP for resource
management are presented in Algorithm 1 above.

a) Complexity of the Fully Centralized Solution: The
above FCP’s complexity depends on (a) the convergence rate
of Algorithm 1, i.e., the maximum number of iterations, and
(b) the complexity of problem (14). The convex problem (14)
can be solved using an interior-point method, where the total
number of variables is ξFCP = K(3 + ELe + B(1 + Lc))
[19]. Hence, the upper-bound computational complexity of
the FCP is O(Vmax(ξFCP)

3.5), where Vmax is the worst-case
number of iterations. Note that, for fixed clustering, high-
quality beamforming vectors and computation capacities can
be found with reduced computational complexity.

D. Decentralized and Distributed Resource Management
a) Partially Decentralized Operation: The paper now

illustrates how the proposed algorithm above is amenable
for distributed implementation in the considered hybrid
cloud/MEC network, with a reasonable amount of information
exchange. Note that initially, the CSIT has to be known
at all clouds. This is reasonable, as in practice, the UAVs
are employed by the network operator by exchanging spe-
cific coordination information during UAV-operation, e.g., see
Fig. 1. The distribution of optimization variables towards their
respective management entity, i.e., CC or ECs, becomes then
feasible, except for constraint (14a), which requires the CC
and ECs to exchange the following terms iteratively∑

i∈K\{k}
|h†

kwi|2. (15)

As we assume full CSIT, CC and ECs are able to efficiently
compute (15) and then forward a single value to all other
entities. A procedure for decentralized resource management
builds upon Algorithm 1, which is implemented at the CC
and each EC and adds an additional step between step 3
and step 4: Exchange (15) between CC and ECs. Using the
PDP, the computational complexity is substantially reduced
and distributed among CC and ECs. The computation com-
plexity at the CC becomes O(V pdp

max (ξPDP)
3.5), and at each EC

O(V pdp
max (Ke(3+Le))

3.5), where ξPDP = Kc(3+B+BLc) and
V pdp

max is the worst-case number of iterations.
b) Fully Distributed Operation: For benchmarking pur-

poses, we also apply the FPD, i.e., a implementation which
treats all cloud-to-EC interference as background noise. In
such case, the entities are unaware of each other’s operation
and manage their respective resources independently. The
complexity is analogous to PDP, with a lower worst-case



Protocol Central cloud Edge cloud
FCP O(Vmax(K(3 + ELe +B(1 + Lc)))3.5)

PDP O(V
pdp

max (Kc(3 +B +BLc))3.5) O(V
pdp

max (Ke(3 + Le))3.5)

FDP O(V
fdp

max(Kc(3 +B +BLc))3.5) O(V
fdp

max(Ke(3 + Le))3.5)

Tab. I: Computational complexities.
number of iterations, i.e., V pdp

max > V fdp
max, as the additional infor-

mation exchange step is dropped. For the ease of presentation,
Tab. I summarizes the three protocols’ complexities. Note that
the considered FDP constitutes a rather optimistic procedure,
as allocated rates are set to feasible values after solving the
problem at the CC and all ECs.

IV. SIMULATIONS

To assess the numerical performance of the proposed algo-
rithms, we consider a cellular network of 7 BSs, each equipped
with 3 antennas, and with 400m inter-BS distance. At the
network edge, we consider E single-antenna (Le = 1) UAVs,
each placed at 150m altitude. The users are placed randomly
within the network, with E users at the cell-edge. For illustra-
tion, we set the noise power-spectral density to −134dBm/Hz,
the fronthaul capacity to Rmax

b = 50Mbps, Qe = 100W, Fk =
108cycles, Dk = 105bits, fmax

0 = 5 · 1010cycles/s, fmax
e =

109cycles/s, Pmax
b = 24dBm, Pmax

e = 17dBm, τ = 10MHz,
Λk = 0.45ms, tk = 600ms, and αk = 1, ∀k ∈ K, b ∈ B,
and e ∈ E , unless mentioned otherwise. The beamforming
vectors are initialized randomly. In this work, we utilize the
3GPP specified pathloss pk,n(dB) = 128.1+37.6 log10(dk,n),
with dk,n being the distance between user and BS in km,
and the UAV-user channel pathloss modeled in [20], with the
excessive pathloss component ηlos = 4, and ηnlos = 35. The
adopted channel model consists of pathloss, Rayleigh fading
(Γl

k,n ∼ CN (0, 1)), and log-normal shadowing effect (8dB
standard deviation). Similar to [11], we set se = 10−28 and
µe = 3, utilizing a specific CPU model.

A. Impact of the Number of UAVs
In the first set of simulations, we compare FCP, PDP, and

FDP in terms of average rate per user versus the number of
UAVs for three fronthaul capacities in Fig. 2, with K = 30
users. It is first observed that all three algorithmic implementa-
tions of the considered scheme, i.e., centralized, decentralized,
and fully distributed, show considerable improvements with
increasing number of UAVs. This emphasizes the positive
impact of the UAV-aided MEC model adopted in the paper.
Interestingly, when Rmax

b = 25Mbps, all schemes outperform
the 0 UAVs-case with Rmax

b = 50Mbps, when E > 3. Another
highlight of Fig. 2 is the remarkable rate improvement of all
schemes when more UAVs are employed. More specifically,
the average rate has a steep increase for low fronthaul capac-
ities, i.e., in low fronthaul regime, and then experiences more
gain while adding more ECs. This underlines the promising
gain of the proposed schemes in terms of communication
aspects, especially at low fronthaul regime. Comparing the
algorithmic implementations of the three proposed schemes,
we note that FCP outperforms PDP and FDP, whereas PDP
always outperforms FDP. While the rate differences are low
when the number of UAVs is small, FCP reaches increased
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Fig. 2: Average rate per user as a function of the number of
UAVs for three fronthaul capacities Rmax

b in Mbps.

gaps at high numbers of UAVs, where the presence of a
centralized resource management orchestrator is more needed.
Interestingly, in high fronthaul regime, PDP has a better gain
over FDP and less gap towards FCP, which highlights the
superior interference management capability of PDP compared
to FDP. In fact, in high fronthaul regime, the interference
within the network becomes problematic, which has to be
tackled by sophisticated interference management techniques,
e.g., FCP and PDP. In fact, in such regimes, PDP shows
considerable gain over FDP and reasonable loss against FCP.
Please note that FCP has a relatively higher complexity, run-
time (see Sec. IV-C), and is often difficult to realize in practice,
which makes PDP more favorable in future dense networks.
B. Dynamics of the Delay Constraint

This part illustrates the numerical dynamics of the delay
expression Θk (6), especially those related to the computation
and transmission delays while implementing PDP. Consider
a network with varying data size Dk, K = 12, E = 4,
Lc = 2, and Pmax

e = 20dBm. Fig. 3 shows the worst-case
delay, i.e., delay of the user with highest delay, versus the
ratio of data size and computation cycles per task Dk

Fk
for

PDP. The rationale of such study is that, regardless of the
delay maximum value, i.e., tk, Fig. 3 captures the trade-
off between communication and computation delay of the
considered system model. When Dk

Fk
is small, i.e., the data

size is small, the worst-case delay mostly consists of the time
it takes to compute the task, whereas the transmission delay
makes up only a fraction of the total delay. With increasing
Dk

Fk
, the transmission delay becomes more prominent, as more

data needs to be transmitted. While rk is already optimized
and no major improvements are possible, the algorithm shifts
the resource allocation towards assigning more computation
capacity fk so as to respect the total delay constraint. Another
notable aspect in Fig. 3 is the different ratio of transmission
and computation delay for the two considered tk values. More
specifically, at Dk

Fk
= 6 · 10−3, i.e., the data size is more

prominent, the ratio of transmission and computation delay is
about 50% for tk = 500ms, and about 80% for tk = 1300ms,
respectively. One the one hand, PDP is a feasible procedure
even in latency-constrained networks, and on the other hand,
this result emphasizes the fairness-factor among network par-
ticipants as delay constraints tighten, since less communication
resources are able to be sacrificed from the worst-case user
towards the well-connected users. As per Fig. 3, the proposed
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Fig. 3: Worst-case delay vs. Dk/Fk.
algorithm’s feasibility in terms of strict and loose maximum
delay constraints and its versatility in terms of varying ratio
of data size and computation cycles are highlighted. In other
words, the results in Fig. 3 emphasize the trade-off capability
of the proposed scheme, as communication and computation
resources are dynamically adjusted towards achieving the
network management goals. Such valuable results illustrate the
numerical prospects of PDP and its promising applicability in
the context of future 6G networks.

C. Network Density and Run Time
We lastly set Pmax

e = 20dBm, E = 4, and vary the
number of users per km2. The runtimes normalized to FDP’s
runtime with 10.9 users/km2 are then given in Tab. II for
the considered protocols. First, we note that PDP achieves
comparable runtimes to FDP, which highlights the numerical
performance gains of PDP, as it provides better rates and
delays in a similar runtime. Focusing on the scalability,
both PDP and FDP roughly double (triple) their runtimes at
approximately double (triple) the number of users, i.e., 20.3
(29.7) users/km2, whereas FCP takes almost three (four) times
longer. These results emphasize the gain of PDP and FDP in
terms of scalability and runtime advantages, and additionally
underline PDP’s superiority to FDP in the context of joint
communication and computation model adopted in this paper.

V. CONCLUSION

Future networks necessitate the explicit management of joint
communication and computation resources, so as to satisfy the
critical requirements of the expected 6G massive deployment.
To this end, this paper proposes, and evaluates the benefit of,
one particular hybrid central/MEC platform, especially intro-
duced to balance the network resources required for joint com-
putation and communication. The paper particularly focuses on
maximizing the weighted sum-rate subject to per-BS and per-
UAV power, per-BS fronthaul capacity, per-device maximum
computation capacity, and per-user delay constraints, so as to
determine the optimal allocated rate, beamforming vectors,
and computational capacities. Thanks to ℓ0-norm relaxation,
SCA, and fractional programming, three different algorithms
are proposed to solve the intricate optimization problem.
The impacts of network parameters on the rate and delay
are then illustrated in the simulation results, which highlight
the numerical prospects of the proposed algorithms for en-
abling joint communication and computation, especially the
appreciable improvements of the data processing delays and

Users/km2 10.9 15.6 20.3 25 29.7
FCP 1.37 2.19 2.92 3.40 4.26
PDP 0.95 1.58 2.21 2.74 3.45
FDP 1 1.56 2.20 2.69 3.37

Tab. II: Normalized runtimes.
throughputs as compared to conventional system strategies. At
strong interference levels, our proposed distributed algorithm,
i.e., PDP, particularly achieves reasonable gains and superior
runtime advantages, emphasizing its applicability to future
networks applications.
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