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Abstract— FAST TCP is important for promoting data-
intensive applications since it can cleverly react to both packet 
loss and delay for detecting network congestion. This paper 
provides a continuous time model and extensive stability analysis 
of FAST TCP congestion-control mechanism in bufferless Optical 
Burst Switched Networks (OBS). The paper first shows that 
random burst contentions are essential to stabilize the network, 
but cause throughput degradation in FAST TCP flows when a 
burst with all the packets from a single round is dropped. Second, 
it shows that FAST TCP is vulnerable to burst delay and fails to 
detect network congestion due to the little variation of round-trip 
time, thus unstable. Finally it shows that introducing extra delays 
by implementing burst retransmission stabilizes FAST TCP over 
OBS. The paper proves that FAST TCP is not stable over 
barebone OBS. However, it is locally, exponentially, and 
asymptotically stable over OBS with burst retransmission.  

I. INTRODUCTION 

TCP has been subject to a tremendous amount of research, 
which aims to improve its performance over networks with 
various transmission characteristics [1]. A large number of 
previously reported enhancements have modified TCP such 
that it adapts to the newly evolving network transmission 
characteristics. These modifications have mostly considered 
best-effort traffic and buffer-oriented routing mechanisms 
which are essential in the current IP-based Internet. 

Optical Burst Switching (OBS) networks tend to be 
bufferless in nature [2]. Its fundamental components are 
control packets and data bursts. A control packet is first 
launched by the edge node and travels through the OBS 
switches to set up the virtual path based on predefined traffic 
parameters. The corresponding data burst is sent at the edge 
without any acknowledgements indicating the success or 
failure of the path setup. With such one-way signalling, OBS 
can achieve all-optical cut-through of each data burst while 
being subject to burst contention in case multiple data bursts 
intend to reserve a common switch fabric at the same time [2].  

There are two types of OBS networks, the barebone OBS 
and the OBS with burst contention resolution [12]. Barebone 
OBS does not employ any burst contention resolution scheme 
such as burst retransmission, fiber delay lines, or deflection 
routing [1]. Burst losses are permanent and are not subject to 
recovery within the OBS domain. On the other hand, OBS 
with burst contention resolution attempts to recover non-
congestion burst losses. Often, burst retransmission and 

deflection routing are employed. In our study we consider 
burst retransmission instead of any other contention resolution 
schemes because it is easy to implement compared to other 
contention resolution schemes such as fiber delay lines or 
deflection routing [1] and generates traceable retransmission 
values.   

In traditional packet-switched networks, IP packets are 
stored and forwarded at each intermediate router, as such the 
network congestion arises as a result of buffer overflow. Thus, 
a packet-drop event indicates network congestion. However, 
barebone OBS does not rely on the usage of network internal 
queuing or pre-routing calculations. Furthermore, packet loss 
occurs due to random burst contention, which does not 
necessarily reflect the true status of network congestion; as 
such, TCP could interpret the occurrence of a packet drop 
event improperly [1].  

From the TCP perspective, network congestion is detected 
either when the TCP observes packet losses and/or packet 
delays. Recall from [1,3], segment aggregation causes the 
increase of round-trip time (RTT), and may impose some 
vicious effects on TCP congestion identification. TCP flows 
with high access-network bandwidth suffer from a timeout 
(TO) as a result of a single burst loss because the TCP 
segments of the entire congestion window (w) that are 
assembled in the burst are lost. On the other hand, TCP flows 
with low to medium access-network bandwidth collect triple 
duplicates (TD) since only a portion of a congestion window’s 
TCP segments are assembled in the contended burst [4].   

FAST TCP [4-6] uses the minimum measured RTT 
(baseRTT), the estimated average queuing delay (RTT), as well 
as the packet loss, to accurately estimate the available network 
bandwidth and the network congestion. FAST TCP has been 
selected for our study since it is beneficial for promoting data-
intensive applications. It cleverly reacts to both packet loss 
and packet delay in network congestion identification. It has 
loss and delay components that incorporate to adjust the 
number of packets on-the-fly according to the network 
condition. Therefore, FAST TCP can be used as a reference 
model for dropping-based and delay-based TCPs. From the 
application perspective, FAST TCP is considered high-
bandwidth type of flow and operates for a relatively long 
period which is expected to take an important role in some 
mission-critical applications such as grid and cloud computing 
applications. Through the study performed in [5], FAST TCP 
obtained the best throughput performance compared with 



HSTCP [7], STCP [8], and Reno under IP-based networks.  
When FAST TCP runs over OBS, the packet delay 

(primarily due to burst assembly and propagation delay) will 
not vary under a fixed source-routing scheme. Thus, FAST 
TCP can suffer from false-congestion identification when 
random burst losses occur in barebone OBS [9,10]. When 
FAST TCP runs over OBS with retransmission, the OBS link-
layer can recover a dropped burst without notifying any upper 
layer (i.e., TCP and IP). This comes at the expense of 
introducing additional delay for the TCP segments contained 
in that optical burst. When FAST TCP detects a sudden 
increase in RTT for the segments assembled in the burst that 
was retransmitted [12], it cannot tell whether the sudden 
increase in the RTT is due to network congestion or due to the 
retransmission in lightly-loaded OBS domain.  

To summarize, FAST TCP may fall in false congestion 
detection as a response to burst losses and/or suddenly 
increased RTT due to reasons other than network congestion 
in both barebone OBS and OBS with retransmission. This 
makes FAST TCP subject to false congestion identification 
and may seriously impair the TCP throughput. Accordingly, 
experimental study in [11] indicated that FAST TCP is not 
suitable for OBS networks. Motivated by the interesting 
scenario, this paper investigates the FAST TCP over OBS 
networks. The paper studies the behavior and stability of 
FAST TCP over OBS networks. Our results show that in the 
absence of burst contention, FAST TCP is rather unstable over 
barebone OBS, where the window dynamics contain multiple 
eigenvalues at the limit of the stability range. The occurrence 
of burst contentions, although degrades FAST TCP throughput 
performance, can enhance the network stability. We also show 
that employing random burst contentions supported by burst 
retransmissions stabilizes FAST TCP over OBS and makes it 
suitable to operate. The study is positioned as the first step 
towards the problem by gaining deeper understanding of 
behavior and stability.   

The rest of the paper is organized as follows. Section II 
highlights the related work and relevant stability analysis. In 
Section III, we model FAST TCP using the discrete-time 
model over barebone OBS and OBS with burst retransmission. 
In Section IV, we analyze local stability of FAST TCP over 
OBS. Section V analyzes FAST TCP global stability. Section 
VI shows numerical results and finally Section VII concludes 
the paper. 

II. RELATED WORK 

Analyzing TCP as a distributed feedback congestion-control 
mechanism located at the end-system that coordinates with the 
network core queues operating at the level of fluid-flow is 
considered a challenging problem [1]. It is even more 
challenging considering next-generation high-speed bufferless 
networks. Relevant to this study, the fluid modeling technique 
has added a new dimension for modeling large number of TCP 
flows. However, fluid modeling approach imposes strict 
assumptions, such as (1) having very large number of TCP 
flows, (2) with Poisson arrival of loss events, and (3) with 
strong correlation between losses in one RTT while being 

independent among the other RTTs. Regarding the first 
assumption, there is no sufficient evidence that the number of 
TCP flows is sufficiently high at the OBS edge node. In OBS, 
since both random burst drops and dropping due to persistent 
congestion may occur, the second assumption is subject to 
further investigation. The third assumption can partially be 
justified as that in the barebone OBS the RTT is more or less 
fixed. This is because the third assumption can only hold for 
the TCP flows which can emit the TCP segments of their 
entire window while being assembled in one burst (e.g.,  fast 
flows [3]).  

The synchronization model proposed in [13] benefits from 
the ack-clocking to include the burstiness factor in the fluid 
model. Note that the fluid model assumes that there is no 
burstiness and the TCP rates of different flows are 
differentiable. Therefore, it may take infinitely long time to 
converge. The synchronization approach has been used to 
model FAST TCP and obtain its stability in [13]. In order to 
obtain sufficient analysis for TCP performance while 
considering TCP stability, the synchronization modeling 
approach needs to capture the bufferless nature of OBS links 
(i.e., fixed TCP RTTs), the burst aggregation factors, and the 
burst-loss distribution.  

The stability analysis presented in [4-6] derived the 
conditions for local and global stability of FAST TCP using 
feedback delays. Generally, the system is stable when delays 
of the sources are small. In [14], the authors presented a 
scalable congestion control mechanism that is decentralized, 
stable at the equilibrium point, achieves high throughput, and 
satisfies fairness. They have showed that protocols based on 
Explicit Congestion Notifications (ECN) appear to have a 
good approximation of the above characteristics in large-
bandwidth delay products. Extending this study to OBS 
domain raises a question; will ECN achieve similar 
characteristics in OBS networks? Simulation and modeling-
based studies presented in [15-17] have tackled this question, 
but they lack a stability analysis.  

In [18], authors studied multi-path routing and dual 
congestion control stability. They found that controlling traffic 
that split among outgoing links leads to oscillation instability. 
The authors focused on studying the stability of a system with 
single bottleneck network shared with traffic sources with 
heterogeneous delays. They showed that the system achieves 
stability after certain amount of time. They also proved global 
stability for the delay differential equations under certain 
constrains.  

In the next section we present a stability model for FAST 
TCP over bufferless burst-switched networks. 
 

III. THROUGHPUT MODEL FOR FAST TCP OVER OBS 
 

FAST TCP is widely considered as a high-speed version of 
TCP Vegas that aims to maintain a constant number of packets 
in queues throughout the network. Similar to TCP Vegas, 
FAST TCP uses both average and the minimum measured 
RTT to estimate the number of packets in the network queues. 
The number of packets in the network queues is taken by the 



TCP sender to determine whether it should increase or 
decrease the sending rate, and the way of sending rate 
adjustment distinguishes FAST TCP from TCP Vegas [1]. 
While TCP Vegas maintains fixed size adjustments to the rate, 
FAST TCP uses an adaptive mechanism to adjust the sending 
rate: it can dramatically increase the sending rate when the 
system is far from equilibrium state, while reducing the 
increment or decrement of sending rate when the system is 
close to the equilibrium state. It has been observed that FAST 
TCP can effectively improve the convergence speed and the 
stability [4-6]. The network model shown in Fig. 1 is adopted, 
while the various speeds of TCP flows are considered. Such 
TCP flow speeds are of our great interest due to the following 
three reasons: (1) the scenario of high speed TCP service 
provisioning on OBS networks is attractive and is envisioned 
to take an important role in future network applications, such 
as grid and cloud computing; (2) the fast TCP flows with high 
bandwidth are most vulnerable to false congestion 
identification in the OBS domain, which could fatally harm 
TCP throughput. Note that the loss of a burst simply results in 
a TCP timeout [1], which results in TCP going back to the 
slow-start (i.e., w=1); (3) our stability analysis captures the 
correlation between FAST TCP flows that have their packets 
assembled in single bursts. Unlike the study in [5], depending 
on the flow speed (e.g., fast, medium, or low [3]), if a burst is 
retransmitted, the induced delay will affect all the active flows 
which have their packets assembled in that burst [3]. 
Therefore, congestion windows for all sources will decrease or 
increase at the same time. Such correlation distinguishes the 
behavior of FAST TCP flows running over OBS from the ones 
running on buffer-oriented IP networks.  
 

 
 
Fig. 1. The adopted model of FAST TCP over OBS networks 

 
The following table lists the notations adopted in the 

modeling processes. 
 
p  : Burst dropping probability  

cp  : Burst contention probability  

ncp  : Probability of no burst contention 

srp  : Probability of a burst contended but 
successfully retransmitted  

cl :  Capacity of link l 
αi : Number of packets in the queue for the ith 

flow. 
  : Constant between 0 and 1 

id  : Round trip propagation delay of the ith flow.  

ibT  : Time-based threshold for burst assembly of 
the ith flow. 

iRTT : Measured round-trip time without 
retransmission of the ith flow 

ibaseRTT : Minimum measured RTT of the ith flow 
r

iRTT   RTT with retransmission of the ith flow 

iR  : Measured retransmission delay of the ith 
flow 

f
iRTT  : Forward feedback delay of the ith flow 
b

iRTT  : Backward feedback delay of the ith flow 

iX : Sending rate of the ith flow 

I : Identity matrix 
K : Routing matrix 

iw : Congestion window for the ith flow 

 
In Fig. 1, the network has a set of l links with a finite 

capacity denoted as cl. There exists a set of i FAST TCP flows. 
The FAST TCP agent updates its window in every fixed 
period. Let di denote the round-trip propagation delay, and 

ibT  denote the total burst assembly delay at both of the OBS 
edge nodes. Let Ri denote the time required to perform burst 
retransmission for packets belonging to flow i. Let the 
congestion window of a source i at time t to be wi(t). Let the 
routing matrix 

il
K = 1 if the source i uses the link l and 0 

otherwise. From Eq. (7) in [5], each FAST TCP flow 
maintains a certain number of packets α in the network at the 
equilibrium, which is defined as,  

0,
( , )

,
i i i

i i i
i

w if R barebone
w R

otherwise retransmission







 


 (1) 

According to Eq. (5) in [4], FAST TCP periodically updates 
the congestion window in every fixed period of time called 
update time:  

min 2 , (1 )
baseRTT

w w w w
RTT

  
       

  
 (2) 

where baseRTT is the minimum RTT observed, and RTT is the 
measured round trip time, (0,1]  . The overall structure for 
the congestion control system is presented in Fig. 2. This 
structure is our congestion control reference used in the 
following sections. 

A. FAST TCP over Barebone OBS 

In a barebone OBS network, the network adopts a fixed 
source-routing scheme, such that the round-trip delay is 
primarily the sum of propagation and burst assembly delay, 
RTTi = baseRTTi = di + 

ibT , which does not vary in the 
presence of a steady traffic load. FAST TCP sending rate of a 
source i at time t is, 

( )
( ) i

i
i

w t
x t

RTT
    (3) 

The agregate rate at certain link l is,  



( ) ( )
il l i

i

y t K x t    (4) 

In barebone OBS, baseRTT and RTT are equal. We model Eq. 
(2) in discrete-time equation as, 

 ( 1) ( ) ( ) (1 ) ( )i i i i iw t w t w t w t      
 

 (5) 

We model Eq. (5) using continous time model; by jointly 
considering Eq. (1), 

( )
( )i

i i
dw t

w t
dt

      (6) 

From Eq. (6), FAST TCP can neither effectively boost the 
available bandwidth nor detect network congestion in 
barebone OBS networks. Furthermore, burst losses occur due 
to contentions even if the OBS network is not congested. In 
FAST TCP flows where all packets in the window of TCP 
flow are assembled into a single burst, FAST TCP suffers 
from false congestion detection if the burst collides with any 
other and is dropped at various traffic loads [9,10]. The sender 
then triggers timeout (TO) retransmission and enters the slow 
start phase, which significantly reduces the flow throughput.  

B. FAST TCP over OBS with Burst Retransmission  

When the OBS network is heavily loaded, random burst 
contentions frequently occur. OBS can recover some burst 
losses in the OBS domain by employing the burst 
retransmission mechanism at the edge nodes [12]. FAST TCP 
will often detect the increases in RTTs due to the burst 
retransmission. Hence, FAST TCP can only detect network 
congestion state based on the variation pattern of the measured 
RTTs during burst retransmissions. 

Although a burst collision can be resolved in the OBS 
domain via retransmission and the packets assembled in the 
retransmitted burst may successfully arrive at their destination, 
the packets must experience a longer RTT. The delay of the 
packets in the retransmitted bursts is denoted by r

iRTT :  

 ( ) ( )r
i i iRTT t d R t 

   

(7) 

where Ri(t) is a random variable representing the additional 
delay due to the retransmission, which is obviously affected by 

at which node the previous burst collided and was lost. In 
specific, the evaluation of Ri(t)  needs to consider the number 
of links that the previous burst has traversed and the burst 
buffering delay at the edge.  

Similar to [10,12,15], we identify two types of successful 
rounds as follows: (1) the rounds that experience contention 
but in which bursts are successfully retransmitted, and (2) the 
rounds that do not experience burst contention. From [12], the 
probability of a successful round that experiences contention 
but in which bursts are successfully retransmitted is:  

   
p

pp
p c

sr 



1             

(8) 

The probability of a successful round that does not experience 
burst contention can be calculated as 

p

p
p c

nc 



1

1    (9) 

Since burst retransmission introduces a sudden delay increase 
for the contending bursts that successfully reach the 
destination, FAST TCP reduces its window size according to 
Eq. (2), leading to reduced throughput. Thus, the FAST TCP 
sending rate can be expressed as:  

( ) ( )
( )

( )
i i

i nc srr
i i

w t w t
x t p p

RTT RTT t

 
   
 

  (10) 

The dynamic properties near the equilibrium of the 
throughput behavior described in Eq. (10), nonetheless, is 
nonlinear and intractable in most cases. Thus, in the following 
section we will first refine the nonlinear model in Eq. (10), 
followed by linearization of the model to make it easy 
manipulated. The effect of delays is essential to the proposed 
stability analysis, and should be included in the throughput 
model. For this purpose, we take into account the forward and 
backward delays in the propagation of delays. We define the 
forward feedback delay from source i to link l as f

iRTT , and 
the backward feedback delay from link l to source i as b

iRTT . 
The feedback delays f

iRTT  and b
iRTT are time-varying in 

OBS with burst retransmission since the notification of burst 
loss could take place at any core node along the route with a 
specific physical distance to the edge node. Considering Fig. 

Fig. 2 Congestion Control Structure 



1, it requires longer time to retransmit a burst that was dropped 
at the third OBS switch compared to the one dropped at the 
first switch. The aggregate rate at certain link l is: 

( ) ( )
( )

( )i

f f
i i i i

l l nc srr f
i i ii

w t RTT w t RTT
y t K p p

RTT RTT t RTT

  
    
 (11) 

Let Ri,l(t) be the retransmission time of TCP source i over link 
l. Thus the round-trip delay for source i that experience burst 
retransmission can be expressed as:  

,( ) ( )r b
i l i i i

l

R t K RTT t RTT    (12) 

Thus we can rewrite Eq. (5) as:  

( 1) ( ) (1 ) ( )i
i i nc i sr i ir

i

RTT
w t w t p w p w t

RTT
  
 

       
  (13)

 

in continous time model and from Eq. (1), we have: 

( ) ( ) ( ) 0( )

( ) 0

i
i nc i sr i i sri r

i

i i sr

RTT
w t p w t p w t pdw t

RTT
dt

w t p

 



  
         




    (14)  

In FAST TCP, packet transmission is clocked at the same rate 
as the throughput of the received flows [3]. In buffer-oriented 
networks, the link queuing delay is determined implicitly by 
the sources’ congestion window [5], while in OBS, the 
retransmission delay takes place independently from the 
sources’ congestion window and the link capacity. However, 
from [13] the frequency of burst contention increases by 
approaching the link saturation. Therefore, the retransmission 
delay vector, Ri (t) = Ril(t), for all links l is determined as,  
 

0( ) ( )

0( )i

f f
l ii i i i

l nc srr f
l ii i ii

c if Rw t RTT w t RTT
K p p

c if RRTT RTT t RTT

    
       


   

(15) 

 
where Ri is given by Eq. (12).  
 

IV. LOCAL STABILITY IN OBS 
 
In this section, we investigate the local stability of FAST TCP 
over OBS. The main result of this study indicates sufficient 
conditions for local stability [14]. In particular, the role played 
by burst contention in stabilizing the network is highlighted. 
Indeed, the results indicate that FAST TCP over OBS with 
burst retransmission has dynamic modes bounded by those of 
FAST TCP over OBS barebone and those of FAST TCP with 
the retransmission delay. We show that burst contention 
improves the quality and stability of FAST TCP over OBS 
only in the presence of burst retransmission.  
 
Theorem 1: FAST TCP over OBS with retransmission is 

1. Locally stable, provided that
ncp given by Eq. (9) 

satisfies 0 1,ncp   

2. Locally exponentially asymptotically stable, If 

i iR RTT   and 0 1.ncp   

When contention is not likely to occur, FAST TCP over OBS 
is unstable, for congestion window increases before reaching 
the limit, recall, Fig. 2. 
Corollary I: If 0ncp  , FAST TCP over OBS with 

retransmission is unstable. The rest of this section is dedicated 
to prove Theorem 1. The proof takes the following steps: 

1. Linearization of the system model described by Eqs. 
(8)-(13). 

2. Expression of the linearized system model in a matrix 
form within the Z transform domain. 

3. Study of the stability conditions for different values 
of probability of contention. 

Define  

( )  ( )  ( )f f
i i i i iw t RTT w t RTT w t        (16) 

( )  ( ) ( )f f
i i i i iR t RTT R t RTT R t      

By linearizing Eq. (15)  
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 ( )  ( )

( ) 0
i

f f
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l i i sr

r
i

i

w t RTT w t RTT
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RTT RTT
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 
 
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 


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  (17) 

Using  

   
1 1

( ) ( )
0 000

f b
liliRTT RTT

li li

f b lili
li li

if K if Kzz
K z and K z

if K if K
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  

 

, and 

   
   1 1

( ) 1 - ( )

( ) ( ) ( )

T
nc sr b

T
f b f nc sr

L z I p I p M DBK z

K z BK z K z D p I p M

 
 
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
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where the matrices D, M, C, and B can be defined as follows:     

1( ), , ,i
i r

i

RTT
D diag RTT M diag M DC

RTT
 
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 

 
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i
r

i

w
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RTT

 
  
 
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1( ) (  ) ( ) ( ) ( ) 0f nc sr sr fK z D p I Mp W z p K z BR z   
     (19)

 

Using Eq. (12), ( ) ( ) ( )T r
bR z R z RTT z  

1

( ) ( )

( ) 0 ( )

0
W(z) 

( ) (  )

T
b

r
sr f

f nc sr

I K z R z

p K z B RTT z

K z D p I Mp

   
     

 
    

  (20)     

From Eq. (19) an input-output relationship between the 
transmission delay at the source and the window size can be 
obtained,  



  1 1( )
( ) ( ) ( ) ( ) (  ) 

( )
T T nc
b f b f

sr

pR z
K z K z BK z K z D I M

W z p

   (21) 

 
On the other hand, Eq. (13) can be written as, 

( 1 ) ( )
( )

( ) (1 ) ( )

f f i
i i i i nc srr f

i i

f f
i i i i i

RTT
w t RTT w t RTT p p

RTT t RTT
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Linearizing Eq. (21) leads to 

2
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Using Z-transform, the matrix representation of this equation 
follows:  

  ( )  ( ) -  R( ))

(1 ) ( )

nc sr srzW z p I Mp W z DBp z

W z
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Stability of W(z) depends on the dynamic term, 
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        (25) 

Eq. (25) can be seen as a convex weighted sum of two terms 
based on the probability of contention. 
  1 2 1( )  ( ) ( ) ( ) ,nc sr nc srL z p J z p J z J z p I p M             (26) 

 
where, 

 -1 -1
1( ) - ( ) ( ) ( ) ( )  (1- )T T

b f b fJ z I DBK z K z BK z K z D I     
   

(27) 
and

 -1 -1
2 ( ) - ( ) ( ) ( ) ( )  M (1- )T T

b f b fJ z M DBK z K z BK z K z D I       
(28) 

Let 
J


 represents the set of eigenvalues of ( )J z

and 
J


 is 

the one when 1  , 1, 2 .   

Lemma 1: When 0ncp  and 1   , the eigenvalues of L(z) 

have the following properties : 
1. There are L zero eigenvalues with the corresponding 

eigenvectors as the columns of matrix  ( )T
bDBK z        

2. The only nonzero eigenvalues are equal to 1  .   
Proof: see appendix. 
 

Lemma 2: When 1  and 

 0, 1, , 0, 2j
nc srp p z e with      , the eigenvalues 

of L(z) have the following properties : 
1. There are L zero eigenvalues with the corresponding  

eigenvectors as the columns of matrix  1 ( )T
bM DBK z        

2. The nonzero eigenvalues have moduli less than 1 If 

max min 1/ 4,R R   

where
max minmax mini i i iR R and R R    

3. If Ri is multiple of baseRTT,     ,i iR RTT where 

0,  then all the nonzero eigenvalues are equal to 

1

1






. 

Proof: see appendix. 
Lemma 3: When 1  and 

 0 1, 1, , 0, 2j
nc sr ncp p p z e with        , the 

eigenvalues of L(z) have the following properties : 
1. There are L zero eigenvalues with the corresponding  

eigenvectors as the columns of matrix 
1(   ) ( ) T

nc sr bp I p M DBK z   

2. The nonzero eigenvalues have moduli less than 1 If 

max min 1/ 4,R R   

where max minmax mini i i iR R and R R    

3. If 
iR is multiple of baseRTT,   ,i iR RTT where 

0,  then all the nonzero eigenvalues are equal to 

1
1

1
ncp




 


. 

Proof: see appendix. 
 

V. GLOBAL STABILITY IN OBS 
 

In this section, we analyze the global stability of FAST TCP 
over OBS. The analysis of global stability will be addressed 
under the assumption that the network is composed of one link 
and that the feedback delays are negligible [5]. Under this 
assumption, Eq. (15) can be reduced,  

0
( )

0( )
l ilnc sr

i
l ili i ii

c if Rp p
w t

c if RRTT RTT R t

   
      

  (29) 

Where  

( 1) ( ) (1 ) ( )i
i i nc i sr i ir

i
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RTT
  
 
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(30) 

Define, 

( )
( ) i

ii

w t
Y t

RTT

 
  

 
     (31) 

Which represents the aggregated load of barebone FAST TCP 
over OBS (i.e. pnc=1 and psr=0). 
Lemma 4: There exist k1 >0 such that the following are true 
for all t>k1 

1. With probability 1, pnc will be different  
2.        ( 1) (1 ) ( ),t t              (32a) 



where 

( ) ( ) i

ii

t Y t c
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
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Proof:  
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Using Eq. (30),  
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In particular, at initial startup the value of pnc=1  and therefore 

initially we have,  

( 1) ( ) i

ii

Y t Y t
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
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0( 1) ( ) ( 1) i

ii
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This is linearly increasing as a function of t and will reach the 

link capacity c at,  
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0
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In such case, pc=1 and therefore pnc is close to 0. 

( ) ( ) i

ii

t Y t c
RTT


        (34)

 

If Eq. (29) is verified with equality for a given value of  
1ncp  then,
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The retransmission time Ri(t) varies from zero, as a low limit, 
and up to theoretically infinity. However, according to the 
FAST TCP, the retransmission time cannot exceed two 
baseRTT after which the packet will be dropped, therefore, 

min maxmin , max ( ) 0i i i
i i

R R R R and R t    

The values of min maxandR R are both bounded. For instance, 

in case of FAST TCP over OBS, min min iR RTT and 

max max iR RTT . Furthermore, we define,  
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Lemma 5: In case 0, ( 1),sr ncp p  two positive 

numbers, 1 2and  , exist such that, 

 min 1 max 2( ) (1 ) , ( ) (1 )t tt t         
 Proof: Using Eq. (34), 
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( 1) ( ) (1 )tY t Y t         (35) 

Where 2
2(1 ) ( )k k     , 2k  is a time index, and 2t k . In 

FAST TCP over OBS, the update of the congestion window 
measured at two successive instants of time, 
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where, 
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In particular, for 0, ( 1),sr ncp p  ( )

( )

r
i

i
i i

RTT t

R t RTT
     

and Eq. (36) will be reduced to the additive increase model  
( 1) ( )i i iw t w t     

which is strictly increasing as previously indicated. On the 
other hand, if 0, ( 1),sr ncp p   then the equilibrium is reached 

when, 
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w t
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
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Eq. (37) could be verified by equating Eq. (14) to 0. Select 1  

such that, 
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1 min min
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Assuming that a time 2t k  such that max 1( ) (1 )tt      

exists, the one step ahead increment change of Y(t) is given by 
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which contradicts Eq. (35). Therefore, max 1( ) (1 )tt     . 

Similar steps can be followed to prove that min 2( ) (1 )tt     

( )i t represents the most important term in the update rate of 

the congestion window for it decides about the existence of the 
equilibrium point as well as the stability. The following 
Lemma shows that the difference between max min( ) ( )t t   is 

exponentially bounded. 
Lemma 6: Let max min( ) ( ) ( )L t t t   , and 3 4and  , two 

positive numbers, such that for t k  and for 0, ( 1).sr ncp p   

the following inequalities are verified. 
1) ( ) 0L t   

2)  max( 1) 1 ( )sr srL t p p L t      

3)  4 max( ) 1
t

sr srL t p p      

Proof: See appendix. 
Lemma 7: For 0, ( 1),sr ncp p   and max min( ) ( ) ( )L t t t   , 

both max min( ) ( )t and t  converge to zero exponentially. 
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Theorem 2: On single link and neglecting feedback delays, 
FAST TCP over OBS is 

1) Unstable and no finite equilibrium point exists if 
0, ( 1),sr ncp p   

2) Globally asymptotically stable, if 0, ( 1),sr ncp p   

with *( ) ir
i

i sr

RTT
w t

R p


  

 
VI. FAST TCP SIMULATION OVER OBS 

 

Simulation is conducted using NS-2, where the NSF network 
topology shown in Fig. 3 is adopted as the OBS core network. 
The distance along each link is in km. Each link has 8 
wavelengths operating at 10 Gbps. Each link consists of one 
bi-directional control channel used for the control signalling. 
The control header processing time is set to be 1 μsec. The 
core nodes implement the LAUC-VF channel scheduling 
algorithm [2]. In order to obtain precise protocol performance 
results, we obtain our simulation results from FAST TCP 
flows originating at edge node E1, and leaves at edge node E14. 
The total number of multiplexed flows at the edge node is 103. 
Packets are routed from E1 to E14 passing by core switches 8 
and 9. The edge nodes, E1 and E14, are connected to the 
network core nodes with a 10ms propagation delay.  

 

 
Fig. 3. The network topology adopted in the simulation. 

 
In order to simulate fast flows [3], we adapted the time-

based burst assembly algorithm, where the burst timeout 
threshold is set to 6ms. Also, a high access bandwidth, 
100Mbps, is allocated to each flow. It has been shown that fast 
flows are severely affected by random burst loses and burst 
delays. In the presence of burst loss, fast flows lose the entire 
congestion window which results into timeout. In the presence 
of sudden increase in RTT, the entire congestion window will 
be affected. We anticipate that medium to slow flows will be 
much less affected compared to fast flows. The packet delay in 
the access network is set to be constant such that the effect due 
to the burst retransmission delay is the only reason for longer 
round-trip time of each packet. In the scenario of burst 
retransmissions, a burst subject to any contention is allowed to 
be retransmitted only once in order to have the best chance of 
meeting the timeout threshold of FAST TCP. Retransmission 
is triggered when the piggyback control packet notifies the 
edge node of a failure in reserving the fabric. Random burst 
contention phenomena occurs at core nodes only. The average 



RTT between E1 and E14 in the simulation is approximately 
100ms. 

In the simulation, FAST TCP senders and receivers are 
attached to the OBS edge nodes E1 and E14 respectively. Other 
TCP flows were generated from every network edge to cause 
random burst contention. The random burst contention 
probability pc ranges in [10-5, 10-2]. An FTP application is 
initiated to generate TCP segments with an average size of 
512B. In all experiments, the maximum window size of TCP is 
103 segments. In order to ensure that FAST TCP traffic fills the 
link bandwidth, we extended the simulation time to 103 s. 

In Fig. 4 we show the average burst RTT in the presence of 
different burst contention probabilities. We observed that in the 
presence of light network congestion (i.e., low burst contention 
probability), the average burst RTT increased as some bursts 
were successfully delivered after the first attempt of burst 
retransmission. However, in the presence of high network 
congestion, the average burst RTT dropped as the bursts are 
often lost in the network and failed to be successfully received 
after the first retransmission attempt.  

 

 
Fig. 4. FAST TCP RTT vs. burst contention probability in both 
barebone and OBS with burst retranmission 

 
In Fig. 5, we provide a closer insight on FAST TCP 

congestion window evolution in the presence of different burst 
contention probabilities. We observed that in the presence of 
light network congestion, the congestion window stabilizes 
since the underlying OBS network can successfully retransmit 
the bursts. On the other hand, in barebone OBS, FAST TCP 
congestion window suffers from a significant and frequent 
losses when the burst contention probability increases. This is 
due to the fact that in barebone OBS, the burst contention 
probability resulted in an immediate burst loss.  
 
 

 
Fig. 5. FAST TCP congestion window vs. burst contention 
probability in both barebone and OBS with burst retranmission 

 
In the following simulation studies, we observe the 

throughput of FAST TCP fast flows over a barebone OBS 
network and OBS with burst retransmission. In Fig. 6, the 
results clearly demonstrate that FAST TCP failed to utilize the 
bandwidth efficiently over barebone OBS network. While with 
one attempt of burst retransmission, burst loss was solidly 
reduced. Such a decrease is contributed by a better precision on 
the detection of congestion state in the network, which avoids 
triggering the congestion avoidance mechanism. Furthermore, 
we observe from Fig. 7 that reducing burst losses while varying 
RTT over OBS with burst retransmission can significantly 
improve the stability of FAST TCP and achieve higher 
throughputs. It is clear that the FAST TCP congestion window 
has a much smoother transition which supports the analysis 
concluded by Theorem 1 and Corollary I in section IV.  

 

 
Fig. 6. FAST TCP throughput over OBS network  



 
Fig. 7. FAST TCP congestion window vs. RTT in both barebone and 
OBS with burst retranmission 

Fig. 8 shows the evolution of FAST TCP congestion 
window over barebone OBS and OBS with burst 
retransmission at different burst loss probabilities. We observe 
that FAST TCP has smoother window transition over OBS 
with burst retransmission. This verifies the better capability by 
using the FAST TCP in dealing with false congestion 
identification due to random burst contention in OBS network, 
where a higher throughput can be achieved. Also, the result 
confirms that FAST TCP stabilizes well in the presence of 
random contentions and random variation of RTT.  
 

 
Fig. 8. FAST TCP congestion window over barebone OBS and OBS 
with burst retransmission  

     Fig. 8 illustrates the dynamic stability of the congestion 
window. One can observe the amplitude of oscillations of the 
FAST TCP over barebone OBS. This instability affect the 
regularity of the network performance and, in many occasions, 
forces the congestion window to be zero hence dropping all 
the packets. In the FAST TCP over OBS with retransmission 
case, the congestion window does not drop to zero and 
manage to reach a minimum required size to still be able to 

handle the traffic in the network. The stability property of the 
FAST TCP over OBS with retransmission makes the 
oscillations less frequent with smaller amplitude giving a 
smoother and regular performance of the network.   

VII. CONCLUSIONS 

In this work, we introduced a model and stability analysis of 
FAST TCP over OBS networks. The network stability was 
analyzed, which led to the conclusion that the occurrence of 
random burst contention, although degrades the throughput 
performance, can enhance the network stability. In the absence 
of contention, our results indicated that FAST TCP is rather 
unstable over barebone OBS, where the window dynamics 
contains multiple eigenvalues at the limit of the stability range. 
We have also found that FAST TCP over OBS with 
retransmission is locally, exponentially, and asymptotically 
stable. Numerical results showed that the burst transmission 
has yielded remarkable enhancements on the congestion 
window size and network throughput in presence of burst 
contention. It also significantly contributes to the FAST TCP 
stability. 

APPENDIX 

Proof Lemma 1: 
 At  1, 1 0 ,nc srp p      
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This is also true for 
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Using the Schur complement, the above equation is equivalent

 

 
 

-1 ( ) ( ) ( )  
0

( ) 1

T
f b f

T
b

K z BK z K z D

DBK z I



         (A3) 

If  1 I is singular, then 1  . Otherwise, the determinant 

in Eq. (A3) is equal to 

    

 

1-11-  .  ( ) 1-  ( )

1-   ( ) ( ) 0
1

T
f b

n
n T

f b

I K z B D I DB K z

K z BK z

 




    

      

(A4)
     

Therefore, 1  is the unique nonzero eigenvalue. 
 
Proof of Lemma 2:  
At 1  , 0; 1nc srp p   



 -1 -1
2( ) ( ) - ( ) ( ) ( ) ( )  MT T

b f b fL z J z I DBK z K z BK z K z D       
Multiplying both sides by 1 ( ) T

bM DBK z  
1

2 1( ) ( ) ( ) ( ) 0T T
b bJ z M DBK z J z DBK z    

Let 
2 ( )A J z I    

  -1 -1 ( ) (  ( ) ( ) )  ( ) 0T T
b f b fA M I DBK z K z BK z K z D M        

(A5)  
This is also true for 

  -1 -1

(  ( ) ( ) ) .

 ( ) (  ( ) ( ) )  ( ) 0

T
f b

T T
b f b f

K z BK z

M I DBK z K z BK z R z D M  

   (A6)     

Using the Schur complement, the above equation is equivalent 
to
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-1 ( ) ( ) ( ) 
0

( )

T
f b f

T
b

K z BK z K z D M

DBK z M I
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
             (A7) 

If  M I is singular, then i
r

i

RTT

RTT
   for i

r
i

RTT
M diag

RTT

 
  

 
. 

Therefore 1,i
r

i

RTT

RTT
    0ifor R  . If 

. .1

0,
w p

iR  then 
. .1

1.
w p

   

If   ,i iR RTT then 1
1,

1



 


 Otherwise, if  M I is 

nonsingular, the determinant in (34) can be computed as 

  1-1-  .  ( ) - ( ) 0T
f bM I K z B D M M I DB K z     

        (A8)  

Which leads to 

  1
 ( ) - ( ) 0T

f bK z B M M I B K z    
                  (A9) 

Using the identity 1 1( ) ( )P P I I P I     , with M
P


 , 

Eq. (A9) becomes 
1
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1
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T
f b

T
f i b
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M
K z I B K z
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
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  
     

             (A10) 

As proven in [6], when 1,  0, 1,nc srp p   and 

 , 0,2 ,jz e with    the nonzero eigenvalues have 

moduli less than 1 if 
max min

1
,

4i iR R  where 

max max ,i i iR R min mini i iand R R . Therefore the 

network is stable.  
In particular, if   ,i iR RTT then 

1
 ( ) ( )

1
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1
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T
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n
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 
 

 
 

 

       (A11) 

Therefore, all nonzero eigenvalues are equal to 1
1

1



 

 .
 

Proof of Lemma 3: 
 at 1  , 1, 1, 1nc sr nc srp p and p p     
Let ( )A L z I  . L(Z) also can be written as,  
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(A12)     

which is also true for    
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Using the Schur complement, the above equation is equivalent 
to 

 
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T
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T
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(A14)    
which can be rearranged as   
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As ncp varies from 0 to 1, the eigenvalues loci, Eq. (A15), 

moves from within the circle of radius 1 to limit of 
stability  1  . On the other hand, 

if    1  nc srp I p M I     is singular then  

 1i i
nc sr nc ncr r

i i

RTT RTT
p p p p

RTT RTT
         (A16)  



  is a continuous strictly increasing real function of 

ncp taking values in the interval , 1i
r

i

RTT

RTT

 
 
 

 and when 

i iR RTT , 1
.

1
ncp 






     

Otherwise, when    1  nc srp I p M I    is not singular, 

Eq. (43) is equivalent to  
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and using the identity 1 1( ) ( )P P I I P I     , the determinant 

can be rearranged      
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        (A17) 

As proven in [5], when 1  and 

 0, 1, , 0,2 ,j
nc srp p z e with      the nonzero roots 

have moduli less than 1 if 
max min

1
,

4
R R  where 

max minmax , mini i i iR R and R R  .  

Particularly, when 
i iR RTT
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Therefore, the nonzero eigenvalues are all equal to 
1

1.
1

ncp 



 

  
Proof of Lemma 6: 
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then 
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Depending on the flow speed, if a delay occurred in the link 
due to retransmission, this delay will affect all the sources 
active on the link [3].  Congestion windows for all sources will 
decrease or increase at the same time. Therefore, for two 
sources i and j, ( )i t and ( )j t will have always the same sign 

and  
( 1) ( 1) ( ) ( )i j i i j jt t a t a t         
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