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Abstract—We propose a cross layer design that optimizes the
energy efficiency of spectrum sharing systems. The energy per
good bit (EPG) is considered as an energy efficiency metric. We
optimize the secondary user’s transmission power and media
access frame length to minimize the EPG metric. We protect the
primary user transmission via an outage probability constraint.
The non-convex targeted problem is optimized by utilizing the
generalized convexity theory and verifying the strictly pseudo-
convex structure of the problem. Analytical results of the optimal
power and frame length are derived. We also used these results
in proposing an algorithm, which guarantees the existence of
a global optimal solution. Selected numerical results show the
improvement of the proposed system compared to other systems.

Index Terms—Spectrum sharing, Energy efficiency, Resource
allocation, Cross layer design,

I. INTRODUCTION

The energy consumption of information and communication
technology (ICT) sector has been dramatically increasing.
Therefore, researchers have been thoroughly investigating the
greenness of the ICT. In order to improve the communication
system’s greenness, several energy efficiency (EE) metrics
have been investigated and analyzed; yet, there is not a formal
framework which specifies the best notion of greenness. Re-
searchers have addressed several EE metrics through different
factors based on different communication layers, e.g., routing,
physical (PHY), media access control (MAC) layers, etc.

In MAC layer, several work have been conducted to im-
prove energy efficiency. In [1], authors assumed a quasi-static
Rayleigh fading channel (i.e., channel does not change during
re-transmission, but it may change independently for new
transmissions). Considering a hybrid ARQ (H-ARQ) protocol,
authors of [1] devised an optimal power allocation that is
obtained recursively for each of the retransmission rounds.
Authors of [2] proposed S-MAC to reduce energy consumption
in wireless sensor networks. S-MAC enables nodes to operate
on a low-duty-cycle, introducing sleeping time to reserve
energy. It also re-introduces the message-passing concept to
save energy through controlling the overhead. Authors of
[3] addressed the energy efficiency metric from a cross-layer
design perspective. They minimized the transmission energy
and normalized transmission energy, where the normalization
parameter is a function of retransmission factor, frame length,
modulation index and channel coding.

On the other hand, researchers have addressed the PHY
layer issues of energy efficiency. In [4], authors studied the

tradeoff between the energy efficiency and the spectral effi-
ciency. This study addressed the fairness issue among differ-
ent orthogonal frequency-division multiple access (OFDMA)
users. The corresponding near-optimal power allocation of the
targeted tradeoff has been derived. In [5], authors tackled
the issue of EE (capacity to power ratio) in a multiple-input
and multiple-output (MIMO) channel under cognitive radio
(CR) settings. They converted the problem into a semi-definite
programming (SDP) problem and obtained the associated
optimal beamforming vector under different assumptions on
the availability of the channel state information (CSI). Also,
under MIMO environment, authors of [6] formulated the EE
problem as a minimization of power constrained by minimum
rate constraint. They derived the optimal beamforming vector
and the associated time slot in a time division multiple access
(TDMA) network.

In this work, we formulate the problem under a CR envi-
ronment. The primary user (PU) is protected by enforcing it
outage probability to be lower than a certain threshold. We
showed that the targeted energy per good bit of secondary
user (SU) is not a convex function. However, we verified
that this problem is strictly pseudo-convex and strictly quasi-
convex with respect to each variable. Using this structure,
analytical expressions of the optimal power and frame length
allocation have been devised. Utilizing these expressions we
propose an algorithm that guarantee a global optimal solution
to the problem. Unlike the work in [3], we consider energy
per goodbit (EPG) metric, i.e., average power divided by
the Shannon capacity metric as the targeted energy efficiency
metric. In addition, we consider the retransmission parameter,
which depends on the modulation index, channel coding
scheme, packet length, and overhead length.

II. SYSTEM MODEL

A. System Model

We consider a CR system where all terminals have a
single antenna, i.e., single-input single-output (SISO) system.
One pair of secondary users, i.e., secondary transmitter (ST)
and secondary receiver (SR), and one pair of primary users,
i.e., primary transmitter (PT) and primary receiver (PR), are
considered in this model. The SU’s and PU’s channels are
designated as hs and hp, whereas the interference channel
links from ST to PR and PT to SR are designated as hsp and



hps. The squared modulus of the channels are expressed as
γps = |hps|2, γsp = |hsp|2, γs = |hs|2 and γp = |hp|2. The
corresponding means of the channels gains are µps, µsp, µs
and µp, respectively, whereas, the variances are expressed as
σ2
ps, σ

2
sp, σ2

s and σ2
p, respectively. The previously mentioned

channel’s gains are assumed to be independent. Through a
feedback channel, we assume that both ST and SR share
instantaneous CSI about the SU channel γs. It is assumed
that PT transmits with a maximum power policy Pp. This is
to consider the worst case scenario of PT to SR interference.
ST has an adaptive power allocation policy (to be described
later) denoted as Ps. SU decodes the PU interference as noise,
since it does not know γps, hence, it is unable to perform any
interference mitigation technique. Considering that our system
operates in a CR environment, we have to protect the PU
from the SU’s interference. Therefore, we enforce an outage
probability interference constraint on the SU’s transmission.
The proposed system considers a sophisticated framework,
which takes into account optimizing two variables, i.e., SU’s
transmission power and SU’s MAC layer’s frame length.
Hence, it increases the problem’s degrees of freedom.

III. PROBLEM FORMULATION

In this section, we present the problem formulation, which
introduces the main framework of the proposed scheme. We
begin by introducing the targeted optimization problem and the
necessary assumptions to solve it. We then study the problem
structure. We verify that the problem in its original form is not
convex with respect to the optimization variables. The strict
pseudo-convexity structure of the problem is then verified.

The proposed EPG minimization problem is expressed as,

P0 : min
Ps,L
Ee (Ps, L) =

Rt

[
LF
L PtPs + Pc

]
L
LF

log(1 +
Psγs

1+Ppσ2
ps
)

(1a)

s.t. C1 : Pr
[
Ip < Rp

∣∣∣γs] ≤ εp. (1b)

C2 : Ps ≤ Ppk. (1c)

where Pc and Pt are assigned parameters which are associated
with the circuit power of the radio devices and power amplifier
constant power consumption. The MAC layer frame length
LF = L + L0 includes the information bits, i.e., L, and the
overhead bits, i.e., L0. The transmission powers Ps and Pp
are the associated power of SU and PU, respectively. Since
we assume that SU does not have knowledge of γps, the
mutual information of SU is derived along similar lines as
in [7], i.e., log(1 + Psγs

1+Ppσ2
ps
) 1. Let us note PI = 1 + Ppσ

2
ps.

Similar to SU case, the PU’s mutual information is expressed
as Ip = log

(
1 +

Ppγp
1+Psσ

2
sp

)
. Rt is the average number of

retransmissions of the frame, which is expressed as, Rt =
1

1−Fer , where Fer is the frame error rate, approximated under
a Rayleigh fading channel as [8],

Fer ' 1− exp

(
−γw
γb

)
, (2)

1The parameter 1+Ppσ2
ps can be easily obtained via sensing PU’s signal,

i.e., E{ypsy∗ps} = 1 + Ppσ2
ps, where yps is PU’s signal at SU sensor.

where γb =
Ps

1+Ppσ2
ps

. The threshold γw is approximated as,

γw ' kM log (LF ) + bM . (3)

where kM and bM are the related parameters to the coding
and modulation schemes [3]. Finally, the number of retrans-
missions is rewritten as,

Rt ' exp

(
kM log (LF ) + bM

γb

)
. (4)

It is clear that both constraints C1 and C2 can be combined,
thus P0 is rewritten as follows,

P0 : min
Ps,L
Ee (Ps, L) =

Rt
LF
L

[
LF
L PtPs + Pc

]
log(1 +

Psγs
PI

)
(5a)

s.t. Ps ≤ min
{
QI , Ppk

}
= P st . (5b)

Note that the capacity normalization parameter L
LF

is moved
to the numerator. Constraints C1 and C2 are converted into a
short-term power constraint, i.e., (5b). The short-term power
constraint QI is obtained from C1 as follows,

Pr

[
1

2
log

(
1 +

Ppγp
Ps(γs)σ2

sp + 1

)
< Rp

∣∣∣γs] ≤ ε (6a)

=⇒ Fγp|γs

(
γp ≤

(Ps(γs)σ
2
sp + 1)

(
eRp − 1

)
Pp

)
≤ ε (6b)

=⇒ Ps (γs) ≤

[
F−1
γp (ε)Pp

(eRp − 1)σ2
sp

− 1

σ2
sp

]+
= QI , (6c)

where (6c) is obtained from the independence between γp and
γs and from the fact that Fγp|γs , being a cumulative density
function (CDF), is a monotonically non-decreasing function.
Note that PU knows the channel gain γp, however, this
constraint is enforced at SU’s side. Therefore, we condition
on γs, while considering γp as the random variable.

In order to analyze the objective function, EPG, we begin
by verifying that it is not convex for all values of Ps and L.
Rewriting the numerator of Ee(Ps, L) as follows,

En (Ps, L) = e

(
a(L)
Ps

)
LF
L

[
LF
L
PtPs + Pc

]
= E(1)n (Ps, L) + E(2)n (Ps, L) ,

(7)

where a(L) = k
′

M log (LF ) + b′M , k
′

M = kMPI and
b′M = bMPI . The terms E(1)n and E(2)n are defined as
E(1)n (Ps, L) = exp

(
a(L)
Ps

) (
LF
L

)2
PtPs and E(2)n (Ps, L) =

exp
(
a(L)
Ps

)
LF
L Pc. Note that, hereafter, we use the notations

En (Ps, L), E
(1)
n (Ps, L) and E(2)n (Ps, L) interchangeably with

En, E(1)n and E(2)n . To check the convexity of EPG (with respect
to L), we test the convexity of En. Rigorously analyzing the
structure of E(2)n , we conclude that the convexity of E(2)n with
respect to L depends on the value of the allocated power
(unlike the results in [3]), as follows,

∀k
′

M

Ps
> 1 =⇒

E(2)n is convex if: L0Ps
k
′
M−Ps

> L

E(2)n is concave if: L0Ps
k
′
M−Ps

< L
(8a)



∀k
′

M

Ps
< 1 =⇒

E(2)n is convex if: L0Ps
k
′
M−Ps

< L

E(2)n is concave if: L0Ps
k
′
M−Ps

> L.
(8b)

The results in (8) verifies that E(2)n is not a convex function
in L. Following a similar line it is easy to show that E(1)n is
also not convex in L. It is also noted that Ee is a fractional
non-convex function of Ps. Therefore, it is necessary to find
an alternative structure of Ee, with respect to Ps and L, to
guarantee a global optimal solution. In [9], it is proven that
to utilize the Lagrangian method in finding the global optimal
variables it is sufficient to prove the pseudo-convexity structure
of the problem with respect to its variables and satisfy the
Karush-Kuhn-Tucker (KKT) conditions. Thus, we verify the
strict pseudo-convexity structure of Ee with respect to each of
the optimization variables, i.e., Ps and L, respectively2.

Lemma 1. The numerator of problem P0 is strictly convex
with respect to Ps.

Proof: It is clear that E(2)n is a strictly convex function
with respect to Ps. To prove the strict convexity property of
E(1)n we derive its first order derivative as follows,

∂En
∂Ps

= e

(
a(L)
Ps

)
LF
L
Pt − a(L)e

(
a(L)
Ps

)
LF
LPs

Pt. (9)

We then devise the second order derivative as follows,

∂2En
∂P 2

s

= e

(
a(L)
Ps

)
PtLF
LP 3

s

[
−Ps + a2(L) + a(L)Ps

]
> 0.

(10)
It is enough to recall that a(L) > 1 to verify (10). Since the
sum of two strictly convex function, E(1)n and E(2)n , results in
strictly convex function. Then, it is clear that En is strictly
convex function with respect to Ps.

It is observed that log(1 +
Psγs
PI

) is strictly concave with
respect to Ps. In the following proposition, to verify the
strictly pseudo-convex structure of Ee, we utilize the fact that
the numerator and denominator of Ee are strictly convex and
strictly concave with respect to Ps, respectively.

Proposition 1. The objective function of problem P0, Ee (Ps),
is strictly pseudo-convex with respect to Ps.

Proof: In order to prove proposition 1, we show that the
ratio between a strictly convex function and a strictly concave
function results in a strictly pseudo-convex function. To show
that Ee (Ps) is strictly pseudo-convex, two conditions must be
satisfied [9],

1) Ee (Ps) is a strictly quasi-convex function.
2) There exist a local minimum P ∗s , i.e., ∇Ee (Ps) = 0.
A strictly quasi-convex function is defined as follows,

Ee
(
λP

(1)
s + (1− λ)P (2)

s

)
< max

{
Ee(P (1)

s ), Ee(P (2)
s )

}
. For

2However, note that verifying the pseudo-convexity structure, separately,
with respect to each variable does not result in a jointly global optimal
solution. Therefore, we verify the strictness of the function. This strict pseudo-
convex structure enables us to utilize the results in [10]. Hence, we propose
an alternating algorithm to iterate over each optimal solution (optimal with
respect to each variable) until it reaches a global joint optimal solution [10].

the sake of analysis, we rewrite Ee (Ps) as a ratio between
a numerator and a denominator terms as follows, Ee (Ps) =

En(Ps)
Ed(Ps)

=
Rt

LF
L

[
LF
L PtPs+Pc

]
log(1+

Psγs
PI

)
. Strict convexity and concavity

properties of each En (Ps) and Ed (Ps) are utilized to show
the strict quasi-convexity of Ee (Ps) as follows,

En
(
λP (1)

s + (1− λ)P (2)
s

)
(11a)

< λEn
(
P (1)
s

)
+ (1− λ)En

(
P (2)
s

)
(11b)

< λEn
(
P (1)
s

)
+ (1− λ)

En
(
P

(1)
s

)
Ed
(
P

(1)
s

) Ed (P (2)
s

)
(11c)

<
En
(
P

(1)
s

)
Ed
(
P

(1)
s

) [Ed (λP (1)
s + (1− λ)P (2)

s

)]
(11d)

=⇒ Ee
(
λP (1)

s + (1− λ)P (2)
s

)
≤ Ee

(
P (1)
s

)
, (11e)

where (11c) results by assuming that Ee(P (2)
s ) < Ee

(
P

(1)
s

)
,

(11d) is valid because of the strict concave property of Ed (Ps).
The second step in the proof is to show that ∇Ee (P ∗s ) = 0.

This step is rigorously derived in Appendix A [11].

By combining (11) and the results from Appendix A, we
conclude that the function Ee is strictly pseudo-convex. Hence,
utilizing the results from [9] the Ps minimizer of problem
P0 is obtained by satisfying the KKT conditions of the
corresponding problem.

Proposition 2. The objective function of problem P0 is strictly
pseudo-convex with respect to L.

Proof: The strict quasi-convexity structure of Ee (L) =

E(1)n + E(2)n is verified by showing that Ee (L) is a decreasing
function or increasing function or decreasing then increasing
function of L [9]. The first derivative of Ee (L) is expressed
as follows,

∂Ee(L)
∂L

=
k

′
M

Ps
e
k
′
M log(LF )+b′M

Ps
LF
L2

+ e
k
′
M log(LF )+b′M

Ps
LF
L

. (12)

Let us note Ee ↑ for an increasing Ee and Ee ↓ for a decreasing
Ee. The behavior of Ee(L) is studied through the following
inequality,

k
′

M

Ps
LFL− 2LFL0 +

k
′

M

Ps
L2 − L0L

Ee↑
≷
Ee↓

0. (13)

Note that as L→∞ the function Ee is increasing function,

lim
L→∞

∂Ee(L)
∂L

> 0. (14)

However, as L→ L0, then,

k
′
M

Ps
> 5

3 =⇒ Ee(L) is increasing
k
′
M

Ps
< 5

3 =⇒ Ee(L) is decreasing
. (15)



For general L, it is noted that,

L ∈ [0 , L∗2] =⇒ Ee(L) is decreasing
L ∈ [L∗2 , ∞] =⇒ Ee(L) is increasing , (16)

where L∗2 = L0

[
3− k

′
M

Ps
+

√(
k
′
M

Ps

)2
+ 10

k
′
M

Ps
+ 9

]
. There-

fore, combining (14), (15), and (16) it is clear that Ee(L) is
a strictly decreasing function then strictly increasing function.
Thus, Ee(L) is a strictly quasi-convex with respect to L. Since
∂Ee(L)
∂L = 0 at L∗2, then, Ee(L) is also a pseudo-convex [9].

Since Ee(L) is both strictly quasi-convex and pseudo-convex,
then Ee(L) is strictly pseudo-convex with respect to L.

IV. METHODOLOGY

In this section, we provide the optimal power policy and
frame length that achieve minimum Ee (Ps, L). We then pro-
pose an alternating algorithm to guarantee a global optimal
solution.

We begin by transforming problem P0 to its epigraph form
as follows, P′0:

min
t,Ps,L

t (17a)

s.t. Ps ≤ P st (17b)

Rt
LF
L

[
LF
L
PtPs + Pc

]
− t log(1 + Psγs

PI
) ≤ 0. (17c)

Due to the existence of 1
Ps

in the exponential term (in
Rt) and inside the logarithm in (17c), the expression of the
optimal Ps is difficult to obtain. Therefore, we change P′0
to an equivalent problem by introducing a new optimization
variable, Pbn, and an equality constraint as follows, P1 :

min
t,Ps,Pbn,L

t (18a)

s.t. : e

(
a(L)
P
bn

)
LF
L

[
LF
L
PtPbn + Pc

]
− t log

(
1 +

Psγs
PI

)
≤ 0

(18b)
Pbn = Ps (18c)

Ps ≤ P st. (18d)

Introducing the equality constraint, in (18c), is the key enabler
of our solution methodology. This is because it separates the
Ps term in the exponential and the Ps term in the logarithm.

The corresponding Lagrangian function of problem P1 is
expressed as follows,

L = t− λ
[
e
γwPI
P
bn

LF
L

[
LF
L
PtPbn + Pc

]
− t log(1 + Psγs

PI
)

]
− µ [Pbn − Ps] .

(19)
The optimal Ps is expressed as follows,

P ∗s =

λtLe−( γwPIP
bn

)
µLF

− PI
γs

P
st

0

. (20)

The optimal Pbn is expressed as follows,

P ∗bn =

 γwPI

2W
[
bγwPI

2a

√
a
b

]
P

st

0

, (21)

where a = λtL
LF

log(1 +
Psγs

1+Ppσ2
ps
) and b = LF

L Ptλ − µ. The
optimal value of t is obtained numerically using a bi-sectional
algorithm. This guarantees an optimal solution because the
problem is quasi-convex. The optimal frame length is ex-
pressed as follows,

L∗ =
L0

Ps
kMPI

2 (Pc + PbnPt)

[
− (kMPIPt − 2PbnPt − Pc)+√

(kMPIPt − 2PbnPt − Pc)
2
+ 8PtkMPI (Pc + PtPbn)

].

(22)
The optimal value of the Lagrangian variable µ is obtained

by equating (21) and (20). Thus, µ∗ is the root of the following
equation,

fµ (µ
∗) =

γwPI

2W
[
bγwPI

2a

√
a
b

]−λtLe−
(
γwPI
P
bn

)
µLF

+
PI
γs

= 0. (23)

The optimal value of the Lagrangian variable λ is obtain by
solving the KKT condition associated with (18b).

Finally, in order to guarantee a global joint optimal solution
of Ps, Pbn, and L we propose, in Algorithm 1, an alternating
optimization algorithm. Because of the strictly quasi-convex
structure of the problem with respect to each variable, it is
verified that the proposed algorithm results in jointly global
minimum value of Ee [10].

Algorithm 1: Proposed Algorithm
input : δ, ε, α, Pt, Pc, kM , bM , Ppk, γs, PI , L0

1 Initialize: P (0)
s = Ppk, P (0)

bn = Ppk, L(0) = Lmax,
cond = True;

2 q = 1
3 while cond do
4 Find a feasible value of t using a bisectional algorithm.
5 In parallel, find λ by solving the KKT conditions

associated with (18b) and find µ∗ from (23), given fixed
Ps = P

(q−1)
s , Pbn = P

(q−1)
bn , and L = L(q−1).

6 By finding µ∗ we guarantee that Ps = Pbn. Thus, SU’s
power is found as P (q)

s = P ∗s , in (20), given L = L(q−1).
7 By substituting λ and µ∗ in (21) we find P (q)

bn = P ∗bn,
given L = L(q−1).

8 The optimal value of frame length, L∗, is found using (22)
given Ps = P

(q)
s , Pbn = P

(q)
bn .

9 Evaluate E(q)e (P
(q)
s , L(q)) as in (5a).

10 if
∥∥∥∥E(q)e − E(q−1)

e

∥∥∥∥ < δ then: cond = False

11 q = q+1;
12 end

output: {P (q)
s , L(q)}

The parameter δ, in Algorithm 1, is the stopping criteria
of the algorithm and Lmax is the maximum frame length. In



Algorithm 1 we initialize t using the bisectional algorithm,
and initialize Ps, Pbn, and L by initial values. It follows that
we find both µ and λ. We then find, in order, P (q)

s , P (q)
bn ,

and L(q). Then, keep iterating and updating the solution until
the difference between the current E(q)e and the previous one,
E(q−1)e , is within a pre decided threshold.

V. NUMERICAL EVALUATION

In this section, we numerically evaluate SU’s EPG. We
show the effect of changing PU’s interference parameters
on the energy efficiency metric. As our formulation of the
energy efficiency problem is unique, we could not find any
work that optimize both the power and frame length using
similar objective function. Hence, the benchmark to our work
is derived in two methods, i.e., separately optimizing the
problem with respect to the transmission power (as in [4])
or with respect to the frame length subject to the previous
mentioned constraint. We then show the improvement gained
by optimizing both parameters, transmission power and frame
length, in comparison to optimizing either the transmission
power or the frame length. The effect of different modulation
and coding schemes on EPG is investigated. We consider
that all the channel gains, γs, γp, γps, and γsp follow an
exponential distribution. TABLE I

SIMULATION PARAMETERS.

Parameter Name Value
Wireless channels Rayleigh,

Slow Flat Fading
Pp 20 dB
Ppk 20 dB
ε 0.6
Primary Rate (Rp) 0.5 symbol / sec
σ2
sp, σ2

ps 1
σ2
s 1, 4, 5

Modulation 4 QAM & 16 QAM
Coding UnCoded & Turbo

Figure 1 evaluates EPG versus ε under several optimization
variables and different SU’s channel’s parameters (σ2

s = 4,
σ2
s = 5). The notations in the figure are as follows, ‘EPG’

represents the scenario of optimizing EPG with respect to
both Ps and L, ‘EPGPs’ represents the scenario where we
optimize EPG with respect to only Ps, and ‘EPGL’ represents
the scenario where we optimize EPG with respect to only L.
It is clear that better channel quality (higher σ2

s ) results in an
improved EPG. Increasing ε, hence increasing QI , results in
improving EPG up to a certain value QI , where Ppk < QI . It
is also observed that ‘EPG’ achieves better performance than
‘EPGL’ and ‘EPGPs’ for all values of ε. Finally, we observe
that ‘EPGL’ increases after increasing ε, hence P st, over a
certain threshold. This means that fixing the power reduces
the system’s performance when optimizing L.

Figure 2 evaluates the EPG versus Ps, using optimal L,
under several coding and modulation schemes, i.e., Uncoded,
Turbo coded, 4QAM and 16 QAM, and several values of
Pt = 0.1, 0.3, 0.5. It is noted that the Turbo coded commu-
nication achieves lower EPG in comparison to the uncoded

ǫ
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Fig. 1. Ee performance versus ε for σ2
s = 4 and σ2

s = 5.

communication. We also observe that higher modulation con-
stellation (16 QAM) achieves worse EPG compared to the
lower modulation constellation (4 QAM). However, at high
value of the transmission power, all schemes approach similar
EPG performance. Increasing Pt power increases the value
of EPG. It is also noted that low values of Pt increases the
tolerance of EPG toward the increment of Ps.
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Fig. 2. Ee performance versus Ps and several modulation and coding
schemes.

Figure 3 evaluates the EPG versus L, using optimal Ps,
under several coding and modulation schemes, i.e., Uncoded,
Turbo coded, 4QAM and 16 QAM, and several values of
Pt. The change of the Ee structure is observed via changing
the modulation scheme and power constraint Ppk. Inline
with the results in Fig. 2, it is noted that the Turbo coded
communication achieves lower EPG in comparison to the un-



coded communication. We also observe that higher modulation
constellation (16 QAM) achieves worse EPG compared to the
lower modulation constellation (4 QAM). Increasing Pt power
increases the value of EPG.

L (bits)
×10

4
0 1 2 3 4

E
P

G
 (

J
o
u
le

s
 p

e
r 

b
it
)

0

5

10

15

20

25

30

35

Ppk = 25, Pt = 0.1, 16 QAM
Ppk = 12, Pt = 0.3, 16 QAM
Ppk = 12, Pt = 0.1, 16 QAM
Ppk = 12, Pt = 0.1 4QAM
Ppk = 12, Pt = 0.1 Turbo 16 QAM
Ppk = 12, Pt = 0.5 Turbo 16 QAM

Fig. 3. Ee performance versus the frame length, L, for several modulation,
coding schemes, Pt, and Ppk .

Figure 4 evaluates the EPG versus both Ps and L, under
several MAC layer overhead, L0, and channel quality, γs.
This figure verifies the strict pseudo-convexity and strict quasi-
convexity structures of the EPG with respect to each variable;
however, it is not a convex structure. From Fig. 4 it is clear
that EPG has a unique joint global minimum for all Ps and L
which inline with the analytical result in the previous section.
We also observe that changing L0 has a different impact on
the structure of EPG in comparison to changing γs. It is noted
that the structure of EPG for L0 = 400 and L0 = 1 are similar
to that in Fig. 2 and Fig. 3.

Fig. 4. Ee performance versus for all Ps and L given different channel
quality, γs, and MAC overhead (L0).

VI. CONCLUSION

In this work, we considered a spectrum-sharing model
where we minimized the energy per good bit of the secondary
user while protecting the primary user. A strict pseudo-convex
structure of the problem is verified. Analytical expressions
of the optimal power and frame length were provided. We
also proposed an alternating algorithm to guarantee a global
optimal solution. It is shown that optimizing the problem with
respect to the power and the frame length, considerably, im-
proves the system’s performance in compared to conventional
methods.

APPENDIX A
It is clear that ∇Ee (P ∗s ) = 0 iff ∇En (P ∗s ) Ed (P ∗s ) −

En (P ∗s )∇Ed (P ∗s ) = 0. Then, ∇En (P ∗s ) =
Ee (P ∗s )∇Ed (P ∗s ). Utilizing the properties of En function,

En (Ps) = En (P ∗s ) +∇En (P ∗s ) (Ps − P ∗s ) (24a)
= En (P ∗s ) + E (P ∗s )∇Ed (P ∗s ) (Ps − P ∗s ) (24b)
≥ En (P ∗s ) + E (P ∗s ) (Ed (Ps)− Ed (P ∗s )) (24c)
= En (P ∗s ) + E (P ∗s ) Ed (Ps)− En (P ∗s ) (24d)

=⇒ En (Ps)
Ed (Ps)

≥ E (P ∗s ) , (24e)

where (24a) follows from the convex property of En and (24c)
is due to the concave structure of Ed (Ps).
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