


Fig. 1: System Model

where s
i

is the current intensity used to transmit a symbol to the
i-th user by the i-th transmitter, h

i,j

is the VLC channel gain
coefficient between the j-th transmitter and the i-th receiver,
and n

i

represents the i-th receiver noise which is modeled as
zero mean additive white Gaussian noise with variance �2

n

. The
direct link that represents the intended transmission established
between the transmitter and its corresponding user has the same
indices, i.e., h

i,i

.
Throughout this work, we consider upper and lower bounds

on illuminance at the receivers’ plane as imposed by the lighting
constraints. We define the illuminance lower bound to be the
least possible illuminance within a cell coverage when all other
sources are turned off. As for the upper bound, we define
it as the sum of the maximum illuminances of a cluster of
neighboring transmitters within their cell coverages. A cluster
is defined to be a set of transmitters that are mutually separated
by less than 2dmin inter-distance, where dmin is the minimum
distance between any two transmitters in the setup. We denote
the total number of transmitter clusters by |�| in the system,
with � being the set of all possible clusters in the system. It
can be noticed that � depends mainly on the cells deployment
layout. We assume that transmitters are placed on the ceiling
in a uniform pattern, as shown in Fig. 1. Furthermore, all
users are assumed to be able to harvest energy during the
whole transmission frame while decoding operations are done
in parallel [10]. We impose a constraint on the system to achieve
a minimum amount of harvested energy for each user. Finally,
the total transmitted power by all cells is constrained to be less
than the available power budget PM.

We assume line-of-sight existence for all links and neglect
any reflected components, we employ the channel model in [11]
where the channel gain h

i,j

between transmitter j and receiver
i depends on the position of the receiver with respect to the
transmitter, and is given by:

h
i,j

=

(m+ 1)RPDAPD

2⇡d2
i,j

cos

m+1
( 

i,j

)rect

✓
 
i,j

 a

◆
, (2)

where m = � ln 2/ ln (cos (�a)) is the Lambertian order, �a
is the semi-angle at half-power of the light source emission
pattern, APD is the effective photo-detector area, d

i,j

is the
distance between the j-th transmitter and user i,  

i,j

is the

angle between the incident light ray from transmitter j and
the normal to the i-th photo-detector plane,  a is the field of
view of the user’s receiver (assumed to be constant for all used
receivers), and rect(x) is the rectangular function defined as
rect(x) = 1 if |x|  1, and 0 otherwise.

III. SE VS ENERGY HARVESTING MAXIMIZATION

In this section, we study the resource allocation problems
of a multiple user SLIPT system in an interference-based
scenario where the SE and energy harvesting maximization
are of particular interest. The receivers are assumed to treat
interference as noise at detection. The exact expression for VLC
channel capacity is not yet available, consequently, we express
the system overall SE based on VLC channels capacity lower
bound [12] with s

i

⇠ Exp(1/x
i

) as

⌘SE =

1

2

KX

i=1

log2

 
1 +

e

2⇡

�
i,i

x2
i

1 +

P
K

j=1,j 6=i

�
i,j

x2
j

!
, (3)

where �
i,j

is the VLC channel-to-noise ratio of the link
between the j-th transmitter and the i-th receiver defined as
�
i,j

= h2
i,j

/�2
n

8i 6= j, �
i,i

= h2
i,i

/�2
n

, x
i

= E {s
i

}.
On the other hand, we evaluate the energy harvesting perfor-

mance through the total harvested power by all receivers which
can be expressed as [4]

PH,tot =

KX

i=1

PH,i

, (4)

where, PH,i

is the total harvested power by the i-th receiver
calculated as [4, Eq. 4]

PH,i

= 0.75Vt

KX

j=1

h
i,j

x
j

ln

0

@
1 +

KX

j=1

h
i,j

x
j

/Io

1

A , (5)

where RPD is the photodetector responsivity, Vt is the thermal
voltage and Io is the dark saturation current of the photodetec-
tor.

A. SE Maximization

The considered resource allocation problem tunes the average
current intensity vector x = {x

i

}K
i=1 to maximize the total

downlink SE. The design should maintain the required illumi-
nation level within range, satisfy the transmitted power budget
and maintain minimum harvested energy per user. Accordingly,
we formulate the following optimization problem:

(P1) max

x

⌘SE

subject to C1 :

KX

i=1

x2
i

 PM

C2 :x
i

⌘
�

hmin/RPD � Emin 8i
C3 :

X

i2Nj

x
i

⌘
�

hmax/RPD  Emax 8j,

C4 :PH,i

� PH,th 8i,



where C1 satisfy the transmitter total radiated power budget
with  denoting the ratio between the LED electrical power
usage and the square of its driving electric current.

The constraints C2 and C3 ensure the minimum and max-
imum allowable illumination levels Emin and Emax, respec-
tively, with hmin and hmax being the channel gain at the
furthest/nearest point from the transmitter within cell coverage,
⌘
�

representing the ratio between the luminous flux emitted by
the LED and its driving current and N

l

representing the l-th
transmitters cluster in the constellation. C4 is used to guar-
antee minimum harvested energy by each user. Interestingly,
PH,i

is positive and monotonically increasing with respect toP
K

j=1 hi,j

x
j

, thus we can rewrite C4 equivalently as

KX

j=1

h
i,j

x
j

� g�1
(PH,th) , (6)

where g�1
(x) is the inverse function of g(x) =

0.75Vtx ln (1 + x/Io).
To solve this problem, we employ alternate optimization

where one of the variables is tuned while the rest are kept fixed,
such that the updated solution maintains the feasibility condi-
tions and the overall objective function is always improved.
Then, roles are changed in a cyclic order between the variable
being optimized and the others till convergence is reached.
Thus, in each iteration of the alternate optimization procedure
we need to solve a single variable optimization problem of the
following form:

(P2) max

xa

⌘SE (x
a

)

subject to xmin,a  x
a

 xmax,a,

where xmin,a is defined as

xmin,a = max

 
EminRPD

⌘
�

hmin
,
g�1

(PH,th)�
P

j 6=a

x
j

h
a,j

h
a,a

!

(7)

while xmax,a is defined as

xmax,a = min

0

B@
s
PM/�

X

i 6=a

x2
i

,
RPDEmax

⌘
�

hmax
�
X

i2Na
,i 6=a

x
i

1

CA .

(8)

The lower limit of (P2) constraint is imposed by the virtue of
C2 and C4, while the upper constraint limit is imposed by C1

and C3. As for ⌘SE(xa

), it is defined as

⌘SE(xa

) =

1

2 ln(2)

0

@
KX

i=1

ln

0

@
1 +

X

j 6=a

�̃
i,j

x2
j

+ �̃
i,a

x2
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1

A

�
KX

i=1,i 6=a

ln

0

@
1 +

KX

j=1,j /2{i,a}

�̃
i,j

x2
j

+ �̃
i,a

x2
a

1

A

1

A , (9)

where �̃
i,j

= �
i,j

8i 6= j, �̃
i,i

=

e

2⇡�i,i 8i.

It can be noticed that ⌘SE (x
a

) is the sum of func-
tions of the following form: ln

�
↵+ �x2

�
and � ln

�
� + �x2

�

where both of them can be decomposed into difference
of two concave/convex (DC) functions of the following
forms �⇢/2x2 �

�
�⇢/2x2 � ln

�
↵+ �x2

��
and �⇢̄/2x2 ��

�⇢̄/2x2
+ ln

�
� + �x2

��
respectively, with ⇢ � �

4↵ and
⇢̄ � 2� [13]. Therefore, (P2) is a DC programming problem
that can be solved by successive convex approximation (SCA)
where the following optimization problem is solved in each
SCA iteration:

(P3) max

xa

⌘̃SE (x
a

)

subject to xmin,a  x
a

 xmax,a,

where max

xa

is written as

⌘̃SE(xa

) =
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(10)

with ⇢
a,i

=

�̃i,a

4�a
, ⇢̄

a,i

= 2�̃
i,a

, �
a

= 1 +

P
j 6=a

�̃
i,j

x2
j

, �
a,i

=

1 +

P
j 6=a,j 6=i

�̃
i,j

x2
j

and x
a,0 is the solution obtained in the

previous SCA iteration.
The solution of the previous problem can be obtained in a

closed form as

x⇤
a

= max (min (xcr, xmax,a) , xmin,a) , (11)

where xcr is found to be

xcr =

x
a,0

P
K

i=1

⇣
⇢
a,i

+

2�̃i,a

�a+�̃i,ax
2

a,0
+ ⇢̄

a,i

� 2�̃i,a

�a,i+�̃i,ax
2

a,0

⌘

P
K

i=1 ⇢a,i +
P

i 6=a

⇢̄
a,i

.

Based on the previous discussion, our proposed solution
procedure for (P1) proceeds as shown in Algorithm I. The
optimization is done over two nested phases, where in the
outer phase we solve a customized user-version of (P2) that
is formulated based on the solution of the previous outer phase
iterations with the aim of optimizing (P1). In the inner phase
of the solution procedure, the solution of each version of (P2)
is obtained by successively solving different SCA-versions of
(P3) using (11).

1) Feasibility problem: Before solving the SE maximization
problem, we need to examine the problem feasibility. One



Algorithm I

1: Input PM, PH,th, Emin, Emax, {�i}K
i=1

2: Initialize F  {x
0

}, ⌘⇤SE  0

3: if
P

K

j=1 hi,j

xmax
eq,i � g�1

(PH,th) then
4: F  F [ x

max

eq

5: end if
6: if

P
K

j=1 hi,j

xmin
eq,i � g�1

(PH,th) then
7: F  F [ x

min

eq

8: end if
9: for each x

init

2 F do
10: Initialize x  x

init

, Alt. error  1, a  1, xprev  
x

init

11: while Alt. error � ✏alt do
12: SCA error  1

13: Initialize x
a,0  x

a

14: while SCA error � ✏SCA do
15: Compute x

a

using (11)
16: Update SCA error  |⌘SE (x

a

)� ⌘SE (x
a,0)|

17: Update x
a,0  x

a

18: end while
19: if a = K then
20: Update Alt. error  |⌘SE (x

⇤
)� ⌘SE (xprev)|

21: Update xprev  x

⇤

22: end if
23: a (a mod K) + 1

24: end while
25: if ⌘SE(x⇤

) > ⌘⇤SE then
26: xopt  x

⇤

27: end if
28: end for
29: Output xopt

way to do so is to solve the following simplified optimization
problem:

(P4) min

x



KX

i=1

x2
i

subject to C2, C3, C4.

After solving (P4), it can be deduced that (P1) is infeasible
if (P4) is infeasible or the optimal value of (P4) exceeds
PM. (P4) is a convex quadratic programming problem, thus
we can solve it using convex optimization subroutines such as
MATLAB CVX package [14].

2) Choosing initial point: Since the algorithm performance
varies with the starting point, so we solve the problem using
three possible initial points and take the best solution. The
possible points are:

1) x

min
eq : xmin

eq,i =
E

min

R

PD

⌘�hmin

8i, which is the equal allocation
associated with the minimum illumination constraint. This
proposed starting point gives good solution to the dense
cell deployment scenario.

TABLE I: Simulation Parameters.

N
0

= 10�21 W/Hz B
v

= 20 MHz H = 3 m
PM = 450W K = 9 E

min

= 100 lux
A

PD

= 1 cm2 R
PD

= 0.6A/W d
min

= 0.5 m
⌘� = 7500 lumens/A  = 23 W/A2 �

A

= 60�

E
max

= 3000 lux h
T

= 1 m

2) x

min
eq : xmax

eq,i = min

✓q
P

M

K

, E

max

R

PD

⌘�hmax

|Ni|

◆
8i, which

is the equal allocation associated with the maximum
illumination constraint2. This initial point gives a good
solution to the sparse cell deployment scenario.

3) x

0

: the solution of (P4), which becomes important when
two previous solutions do not satisfy C4.

B. Energy harvesting maximization

In this study, we are interested in studying the energy
harvesting performance limits of SLIPT systems in interfer-
ence scenario under illumination constraints. To this end, we
formulate the following problem

(P5) max

x

PH,tot

subject to C1, C2, C3.

This problem is not a convex program, consequently, we
propose using the following lower bound

˜PH,tot =

KX

i=1

ln
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@
KX

j=1

0.75h
i,j

x
j

Vt

1

A

+

KX

i=1

ln

 
ln

 
1 +

KX

i=1

h
i,j

x
j

/I
o

!!

(12)

as a surrogate function for the original one and solve the
following optimization problem instead

(P6) max

x

˜PH,tot

subject to C1, C2, C3.

The objective function ˜PH,tot(x) is a sum of either the com-
position of ln(.) or ln(ln(.)) function, which are both concave
functions, with affine combination of the optimization variables.
Thus, ˜Ph,tot(x) is a concave function, which results in a convex
optimization problem thanks to the convex set properties of
C1� C3 [15]. As a result, (P6) can be solved using any of
the available convex programming software packages.

IV. SIMULATION RESULTS

The simulation setup consists of nine transmitters distributed
over a square lattice on the ceiling of an indoor area at a height
H from the ground. It is assumed that user-cell association is
done based on nearest distance, which is obviously translated to
the square cell boundaries of side length dmin in the receivers

2|Ni| represents the cardinality of the set Ni (number of transmitters in
cluster i which is constant due to uniform lattice layout of transmitters and
equals 4 for square grid lattice)



plane as shown inf Fig. 1. The nine users served by the system
are distributed at random such that each user is placed according
to an uniform distribution within its corresponding transmitter
square cell boundary in the receivers plane. Moreover, the
receivers-to-ground vertical separation is assumed to be hT,
with all transmitters and receivers having horizontal orientation.
The average results presented in this work are calculated based
on 1000 random users’ locations realizations. The simulation
parameters values are provided in Table I, unless otherwise
specified. Throughout the following simulations, we study the
performance of three allocation strategies, namely maximized
SE solution (solution of (P1)), maximized harvested energy
solution (solution of (P6)), and the basic uniform allocation
(xmax

eq

). We assume zero SE and energy harvesting performance
for infeasible problem realizations in average calculation of
these objectives.

In the first simulation, we study the effect of varying the
distance between neighboring cells (which is the main controller
for interference severity) on average optimized SE and average
optimized harvested energy. To monitor the extreme SE and
total harvested energy performances, we keep the per-user
harvested power constraint inactive in this simulation. As dmin

increases, it can be seen in Fig. 2 that average SE performance
is improved because interference terms of the objective function
gets smaller and this improvement outweighs the performance
deterioration that could be caused as the direct links channel
gains gets worsened for small dmin (probability of increased
separation between users and their associated transmitters as
cells gets larger). Thus, it can be deduced that if dmin increases
to values higher than 3.5 m, the average optimized SE perfor-
mance will deteriorate and even reach zero as more realizations
will become infeasible due to minimum illumination constraint.
As for the relative performance between the three solutions, it
can be noticed that the SE performance loss due to maximizing
harvested energy diminishes as dmin increases. However, the
SE performance gap between maximized SE solution and the
two other solutions is significantly high in dense deployment
scenarios. On the other hand, the average total harvested power
performance of the three considered solutions gets worse as
dmin gets larger as shown in Fig. 3, which is expected since
the receivers get further away from the transmitters so that
the effective areas of their receivers are exposed to smaller
power densities. It can be seen that the maximized harvested
energy solution outperforms the two other solutions, and the
performance gap between the three algorithms gets smaller as
dmin increases. Interestingly, it was found that, from harvested
energy perspective, the uniform allocation solution outperforms
SE maximization for small values of dmin and the effect is re-
versed for large values. It can be deduced that energy harvesting
solution tends to always satisfy C1 with equality as the PH,tot is
monotonically increasing with the power allocation. However,
this is not the case for SE maximization which could easily
decrease the total transmitted power to alleviate interference
effect. Thus, at small dmin, the uniform allocation solution
pushes transmitters to fully use PM which makes it better
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Fig. 2: Average SE vs Min. inter-cell separation distance dmin
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Fig. 3: Average harvested power vs Min. inter-cell separation
distance dmin

than the maximized SE solution. Albeit, when dmin becomes
large enough, the maximized SE solution exhausts PM while
allocating power in a way that considers channel asymmetries
which is not considered by the uniform allocation. It can be seen
clearly from Fig. 2 and 3 that maximizing one of the objectives
comes at the cost of significant losses for the other, specially
under severe interference conditions.

In the second simulation, we study the effect of increasing
the minimum harvested power constraint on the average SE
performance for Emax = 5000 lux. It can be noticed that as
PH,th increases the SE performance of optimized SE solution is
not affected initially (C4 is not active yet). As PH,th continues
increasing, the SE performance deteriorates as the feasibility
space gets tighter and the optimization solution satisfies C4

with equality. As PH,th keeps increasing, the probability of
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having more infeasible problems with zero contribution to the
average SE performance increases. On the other hand, uniform
allocation solution maintains SE constant as PH,th increases till
it reaches a critical value where the uniform allocation solution
infeasibility frequency increases, hence zero SE starts to be
counted for a subset of the realizations which deteriorates the
average till it reaches zero.

V. CONCLUSION

In this paper, we considered the power allocation problem
for a multi-cell SLIPT system where interference has a non-
negligible effect on the system performance. We investigated
the performance limits of this system by maximizing two of
its design objectives, namely system overall SE, and total
harvested energy severally under lighting constraints. Moreover,
we monitored the effect of optimizing each objective in terms
of optimality losses in the other through extensive simulations.
Furthermore, we studied the effect of adding minimum energy
harvesting constraint per user on the SE performance metric
and proposed a distributed algorithm to solve this problem.
Simulation results highlighted the trade-off between SE and
energy harvesting whose severity explodes as cells becomes
in close proximity. These results motivated studying the SE-

energy harvesting multi-objective optimization problem in order
to reach solutions that achieve balance between the two design
objectives. This approach would give SLIPT system designers
the freedom to find proper allocation that accounts for the
desired importance of each design objective.
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