
I. INTRODUCTION 
Currently, the complex Internet infrastructure interconnects 
millions of communication devices and computing equipments 
through wired and wireless connections. One of the key 
success factors of today’s Internet infrastructure has greatly 
relied on the ability of maintaining reliable, self-regulated, and 
congestion-tolerant transport protocol that serves the end-user 
applications. Transport Control Protocol (TCP) [1], which was 
designed for military communication by ARPANET [2], has 
been taken to serve as the most pervasive and well recognized 
standard for a majority of currently available Internet-based 
applications. While analyzing the statistical network data, it 
has been reported that TCP is the most predominant protocol 
in terms of the traffic volume (in Bytes), which may take up to 
90% of the total Internet traffic [3]. The High-Performance 
Computing (HPC) networks observed an average share of 
83%, and for the NETI@Home data the authors found that 
TCP flows contribute the major traffic volume seen in our 
datasets.   

A.  Introduction on TCP 

TCP congestion control mechanisms can be classified into the 
following three categories: (1) loss-based (e.g., Reno [4] and 
Sack [5]), (2) delay-based (e.g., TCP Vegas [6], Fast TCP 
[8][9]), and (3) explicit notification-based (e.g., XCP [7]). 
They are basically the approaches taken by a TCP sender to 
determine if the network is in a congestion state such that the 
transmission rate is adjusted accordingly, while the receiver 
can be totally reactive to the transmission protocol. 

The standard dropping-based TCP protocol stack, e.g., TCP 
Reno, which follows an Additive Increase Multiplicative 
Decrease (AIMD) window-based congestion control 
mechanism for regulating data transmission and maintaining 
network bandwidth usage simply takes a packet (or TCP 
segment) dropping event as the indication of network 
congestion. The AIMD framework is comprised of four stages 
for each TCP sender: slow start, congestion avoidance, fast 
transmission, and fast recovery [4].  

At the slow start phase, the TCP sender has just started or 
restarted transmitting due to a Timeout (TO) event and the 
congestion window (cwnd) is initialized to the size of one 
segment. The size of cwnd is exponentially increased at each 
successfully delivered and acknowledged segment. The 
exponential growth of the cwnd continues until either it 
exceeds the receiver’s advertised cwnd or a packet loss is 
reported, which leads the TCP protocol into the congestion 
avoidance stage. Note that the network congestion state is 
reported either when the transmission TO threshold is reached 
or when the receiver collects triple-duplicated 
acknowledgments (TD). In the former case where a TO event 
occurs, which indicates a heavy congestion, the cwnd is set to 
one segment, and the TCP returns to the slow start stage 
followed by the congestion avoidance stage. In the latter case, 
which indicates a light congestion, TCP enters the fast 
retransmission stage by taking a half of the sender’s cwnd as 
the slow start threshold ssthresh and setting the cwnd to 
ssthresh plus three segments. Then the sender retransmits the 
lost segment and increments its cwnd by the segment. After 
acknowledging the second data segment, the cwnd is set to the 
ssthresh.  
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Different from the dropping-based TCP, delay-based TCP 
implementations, such as TCP Vegas [6] and Fast TCP [8][9], 
estimate the bandwidth and congestion status in the network 
by measuring the delay of each packet transmission in terms 
of round trip time (RTT). The performance of Fast TCP has 
been evaluated in [8][9], which can be considered as an 
enhancement of TCP Vegas with better throughput. 
Nonetheless, in the following context will focus on the 
introducing TCP Vegas congestion control scheme for better 
comprehensiveness.  

TCP Vegas modifies TCP Reno in the congestion 
avoidance, slow start, and retransmission stages, which 
determines the congestion status in the network according to 
the comparison of estimated and measured throughputs. TCP 
Vegas first computes BaseRTT as the minimum measured 
RTT, which is mainly determined by the propagation delay 
and the queuing delay. The Expected throughput can thus be 
derived as /Expected cwnd BaseRTT= , where cwnd is the 
current congestion window size. Second, the Actual 
throughput is calculated for every RTT using the most recent 
measured RTT: /Actual cwnd RTT= . TCP Vegas sender 
then computes the difference between the two quantities 
(denoted as Diff):   
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Obviously, Diff is non-negative, and is used to adjust the next 
cwnd. Vegas defines two threshold values, denoted as α and β, 
for controlling the cwnd, which is changed as follows: 

.
1

1

⎪
⎩

⎪
⎨

⎧

>−
≤≤

<+
=

β
βα

α

diffcwnd
diffcwnd

diffcwnd
cwnd  

If α<Diff , Vegas increases cwnd linearly in the next round. 
If ,β>Diff  Vegas decreases cwnd linearly in the next round. 
Otherwise, Vegas leaves the cwnd unchanged.  

TCP Vegas congestion-avoidance mechanism aims to 
maintain the expected number of backlog packets on-fly in the 
network between α and β. If the Actual throughput is much 
smaller than the Expected throughput, it is likely that the 
network is congested, and TCP sender should reduce the flow 
transmission rate. On the other hand, if the Actual throughput 
is close to the Expected throughput, the connection may not be 
utilizing the available bandwidth, and thus the flow rate 
should be increased.  

In slow start stage, TCP Vegas increases cwnd exponentially 
only every other RTT, and exits slow start if cwnd reaches the 
slow start threshold. In between the two consecutive RTTs, the 
cwnd stays fixed in order to make a valid comparison between 
the Expected and Actual throughput.  

When TCP Vegas sender receives an acknowledgement 
(ack), it records the clock and calculates the estimated RTT 
using the current time and the timestamp recorded for the 
associated packet. Vegas then decides whether to retransmit 
the packet based on the following two conditions: First, when 
a duplicated ack is received, Vegas checks if the difference 

between the current time and the timestamp recorded for the 
associated packet is greater than the TO value. If true, the 
Vegas sender retransmits the packet without having to wait for 
the remaining incoming duplicated acks. Second, when an ack 
is received, if it is the first or the second ack after a 
retransmission, Vegas again checks if the time interval since 
the packet was sent is larger than the TO value. If it is, the 
Vegas sender retransmits the packet. Since this will catch any 
other packet that may have been lost prior to the 
retransmission without having to wait for the remaining 
duplicate ack, hence, Vegas retransmission mechanism 
reduces the time in detecting a lost packet from the third 
duplicate Ack to the first or the second. After the packet 
retransmission is triggered by a duplicate ack, the cwnd is 
reduced by 25% (instead of 50% in Reno) only if the time 
since the last window size reduction is more than the current 
RTT. 

The third TCP congestion-control mechanism belongs to 
explicit notification-based TCP. In this category, TCP with 
Explicit Loss Notification (ELN) [10], or Explicit Congestion 
Notification (ECN) [11] are the two representative 
approaches, which were developed to identify suspicious 
packet losses which may cause unnecessary retransmissions. 
Furthermore, TCP ELN/ECN can distinguish packet losses 
among congestion, contention, link failure, or other reasons. 
The packet retransmission starts as soon as the ECN or ELN is 
received, which is the round after the one that encounters a 
packet loss.  

B. Evolution of Optical Switching Technologies 

Optical backbones based on WDM are the most prevalent 
transportation carrier in modern communication networks. 
Several switching technologies have been proposed to take 
advantage of the high-transmission capacity of fiber optics. 
Early approaches followed Optical Circuit Switched (OCS), 
where point-to-point lightpaths are established for a relatively 
long period of time. OCS follows the store and forward 
approach where each optical switch performs optical-to-
electrical-to-optical (O/E/O) conversions. However, the rapid 
increase in user demands and traffic engineering requirements 
have imposed several limitations on the adoption of OCS. 
First, since the number of available wavelengths is limited to 
few tens or hundreds, the task of Routing and Wavelength 
Assignment (RWA), which optimizes the assignment of 
wavelengths to all users, is NP-Hard. Second, due to its quasi-
static nature, OCS can barely support dynamic traffic variation 
and frequent connection requests.  

Due to the ubiquity of the Internet Protocol (IP), much 
research has addressed the integration of IP with WDM 
networks. Optical Packet Switching (OPS)  [13][14][24] has 
been proposed to support this integration, where the optical 
core can be taken as an extension of the IP layer.  With OPS, 
each optical packet consists of header and data payload and is 
launched into the optical network. As packet arrives at an 
optical switch, the header is converted and read in the 
electronic domain to configure the switch fabric, while the 
data is buffered optically in a fiber delay line (FDL)  [21] until 
the switch configuration is completed. OPS follows all-optical 
(AO) buffer-oriented transmission approach. OPS can 
successfully solve the inadequacy and inefficiency of the OCS 



 

technology in terms of bandwidth provisioning, dynamics, and 
capacity utilization. However, the technical barrier before such 
highly synchronized system can be commercialized due to the 
high cost of all-optical buffer facilities and the dimensioning 
of these delay lines.  

Optical Burst Switched (OBS) networks have attracted the 
attention of researchers due to its ability to achieve more 
dynamic and on-demand bandwidth allocation than OCS. It 
also offers improved network economy and enables control 
and management integration  [13][14]. Compared with OPS, 
OBS is more practical to implement, and combines the best of 
OCS and OPS networks. With OBS, data burst is formed at 
the edge node by assembling multiple incoming packets with 
same destination and/or QoS requirements. To transfer the 
burst to the destination, a corresponding control packet that 
contains both the burst size and the burst arrival time is 
created at the network edge node, and is sent prior to the 
launch of the burst  [13] [14]. Since the bursts cut-through each 
intermediate node in the network core while the control 
packets are subject to processing at each core node, certain 
amount of offset time must be imposed between lunching 
control packets and the corresponding bursts. The calculation 
of the offset time has to consider the upper bound on number 
of hops and nodal processing delay. OBS follows AO 
transmission approach. With its out-of-band signaling 
mechanism, OBS provides complete separation between 
control and data domains that can yield better network 
manageability and flexibility. Since the launched bursts cut-
through the network core without any buffering, the bursts can 
be subject to a minimum amount of delay 

C.  Optical Burst Switched (OBS) Networks 

OBS networks are basically bufferless yet best-effort in nature 
[12][13][14][15][16]. Basically, with IP over OBS networks, 
the IP applications and services are overlaid upon the OBS 
backbone, and the two layers are interconnected through OBS 
edge nodes and the corresponding IP routers. The term “OBS 
domain” generally depicts the optical network with 
Wavelength Division Multiplexing (WDM) technology 
formed by a group of OBS edge and core nodes, which run a 
suite of dedicated routing and signaling protocols. The OBS 
domain routing and signaling protocols could be independent 
from the upper IP compatible protocols, where an overlay 
model is followed. Alternatively, the IP and OBS domains 
may run a joint protocol by making the whole network into an 
augmented service model, where some extent of routing and 
traffic engineering information exchange is performed. Our 
discussions in the paper focus on the latter case in order to 
achieve a cross-layer design. 

Within the OBS domain, a data burst is formed at an OBS 
ingress edge node by assembling multiple incoming IP packets 
with a common OBS egress node and similar quality of 
service (QoS) requirements [12][13], as shown in figure 1. 
Since each IP-access router is attached to an OBS edge node, 
the OBS domain which provides high-speed transportation, 
can serve as the link-layer transmission media for the IP-
access routers. 
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Figure 1. An illustration of OBS networks 
 

The bufferless and AO nature make the OBS networks 
distinguished from the traditional packet-switched networks 
which significantly rely on the electronic processing capability 
[12]. The implementation of OBS networks requires more 
precise signaling and a much higher switching speed than that 
required by Optical Circuit Switched (OCS) networks 
[15][16]. The edge nodes are capable of performing 
electronic-optical (E/O) and optical-electrical (O/E) 
conversion to collect/sort/assemble incoming IP packets from 
the higher layers into optical data bursts, and dissemble the 
optical data bursts back to the IP packets at the destination 
edge nodes. The edge nodes are also responsible for signaling 
and routing in the OBS domain. The core switches, on the 
other hand, are subject to configuration requests via control 
packets sent by the OBS edge nodes, where the data bursts are 
forwarded and cut through the OBS domain in an AO manner 
[12][13][14][15][16].  

A burst contains several other fields when assembled at the 
edge node. Figure 2 illustrates the burst assembly process as 
well as the burst format. A burst consists of Guard Preamble 
(Guard-B) and Guard Postamble (Guard-E) fields that help to 
overcome the uncertainty of data burst arrival time and data 
burst duration due to clock drifts between different core nodes. 
The payload basically consists of the assembled incoming data 
packets. Payload Type (PT), Payload Length (PL), and 
Number of Packets (NOP) represent the type of data, data 
length, and number of packets assembled in the burst, 
respectively. The offset of padding indicates the first byte of 
padding. The Optical Layer Information (OLI) includes some 
information for performance monitoring and forward error 
correction obtained from the communication channels [13]. 

 

 
 
Figure 2. OBS edge node architecture 



 

Typically, an OBS core node (switch) consists two layers. 
The upper layer is responsible for processing control packets 
and configuring the switching fabric. In this layer, control 
packets are processed, switching resources are reserved, and 
switching resources are freed after the burst cut-through the 
switch. The switch matrix control unit and the port forwarding 
table, which is a lookup table and link scheduling 
[35][36][37][38][39] module are maintained. The lower layer 
is responsible for all-optical burst transport functionality. The 
lower layer consists of optical ports, wavelengths, and optical-
to-optical connections. Figure 3 illustrates the generic OBS 
core switch architecture. 

 

 
Figure 3. OBS core switch architecture 

 
Fixed-path routing is a general approach taken in the OBS 

domain, where a physical route is pre-defined for each pair of 
OBS edge nodes. In order to deliver a burst from the source 
OBS edge to a certain remote one, a corresponding control 
packet that keeps the length of the burst and the arrival time of 
the burst at each intermediate node of the given route is 
created at the edge node and is sent prior to the launching of 
the data burst [15]. Since the burst cuts-through the 
intermediate core nodes without any processing delay, the 
control packet is intrinsically slower than the burst. In order to 
prevent the burst from catching-up with its control packet, it is 
important to define offset time between the time instants of 
lunching the burst and the control packet [15][16] as shown in 
figure 2 and 3. This is also referred to as delayed reservation, 
which serves as the basis for OBS operation. The offset time is 
added to the average delay of the burst delivery with its 
minimum value determined by the number of hops along the 
route that the control packet traverses through. Then the data 
burst cuts-through the network following their control packet 
in a one-way (i.e., Tell-and-Go) signaling fashion.  

Although OBS can achieve much better flexibility and 
efficiency than the OCS based wavelength-routed networks, 
OBS suffers from burst contention which leads to burst drop 
due to the one-way resource reservation signaling and the lack 
of optical buffering. Burst contention occurs when more than 
one burst simultaneously attempt to take a common output 
port or wavelength channel [12][13], which results in dropping 
n – 1 bursts when there are n contended bursts. Burst 
retransmission [17][18], burst deflection routing [19][20], 
Fiber Optic Delay Lines (FDL) [21], burst segmentation [22], 
and wavelength conversions [23] are some reported 

approaches for increasing the reliability of the burst 
transmission in the OBS domain. Each scheme has imposed 
some impacts on TCP performance, which motivated 
numerous related studies to be seen in the past decade.   

D.  Overview of the Article 

The goal of this article is to give an overview on the state of 
the art of TCP developments over OBS networks, including 
the recent proposed modifications and research challenges in 
such a deployment scenario. In addition, we are committed to 
conduct a comprehensive survey and tutorial on the reported 
solutions in TCP over OBS networks by classifying them into 
the following three categories: (1) link-layer solutions (i.e.,  
solutions implemented at OBS domain), (2) modifications or 
enhancements based on conventional TCP (TCP originally 
designed for IP packet-switched networks), and (3) newly 
designed TCP congestion-control mechanisms.  

With the first category, the solutions, which aim to asset 
TCP in understanding various burst transmission behaviors, 
require an implementation of additional supporting functions 
at either the OBS edge node or the OBS core node. Generally 
there are two problems incurred in this solution category. 
First, it breaks the TCP end-to-end semantics. Second, it 
introductions additional control overhead that impair the 
applicability of the scheme. The solutions in the second 
category can overcome the abovementioned problems by 
preserving the end-to-end semantics of TCP congestion 
control such that no extra signaling overhead is required by 
any intermediate network device except for the TCP senders 
and receivers. However, the price is paid at the effectiveness 
of the scheme, which may make TCP senders hard to follow 
the fluctuation of network congestion state in the OBS 
domain. Finally, the third category of solutions includes a 
totally new transport protocol that copes with the underlying 
burst transport behaviors.  

The rest of the paper is organized as follows. In Section II, 
the issues of running TCP over OBS networks are identified, 
where the problems due to the bufferless transmission 
characteristics in the OBS networks are formulated. In Section 
III, a comprehensive survey is given on the recently proposed 
solutions for TCP over OBS networks in all the three 
categories. Further discussions on the algorithms and some 
open research problems are given in Section IV. Finally, we 
summarize and conclude the paper in Section V. 

II. ISSUES OF TCP OVER OBS NETWORKS 
In this section, the taxonomy of OBS networks, namely,  
barebone OBS and burst contention resolution (BCR) OBS, 
are introduced. The transmission characteristics of each type 
are further identified. Afterwards, we discuss the fundamental 
problems of running TCP over both types of OBS networks. 

A.  Taxonomy of OBS Networks 

Considering the OBS resource-reservation-signaling 
mechanisms, implicit [15] and explicit [16] resource 
reservations have been reported. In terms of burst assembly 
mechanisms, time-based, burst-length-based, mixed (both time 



 

and burst length), and optimized burst-size-based OBS 
networks have been reported [12][13][14]. Since burst 
contention resolution mechanisms play vital role in the 
deployment of TCP over OBS, this article classifies OBS 
networks according to whether there exist any burst contention 
resolution mechanism in OBS domain, where two categories 
can be derived, namely barebone OBS and burst contention 
resolution (BCR) OBS.   

• Barebone OBS  
In barebone OBS, control packet is sent to reserve the 
intermediate switching fabric in a one-way signaling scheme. 
After a predefined offset time, the burst cuts-through certain 
path until it reaches the destination. In literature, two major 
resource-reservation protocols in OBS domain, called Just-In-
Time (JIT) and Just-Enough-Time (JET) are widely 
investigated. The JIT resource-reservation protocol introduced 
in [16] follows the explicit-reservation approach. Upon 
receiving the control packet, the switching fabric is reserved. 
The control message continues traveling on hop-by-hop basis 
followed by the data burst until the destination is reached. 
Once the burst leaves the edge node, a tear-down packet is 
sent along the same route to release the reserved resources. 

The JET resource-reservation protocol introduced in [15] 
follows the delayed reservation with implicit resource release 
approach. The intermediate core nodes which are traversed by 
the burst can automatically release the reserved switching 
fabric shortly after the burst leaves the switch. Since both 
schemes never guarantee the channel availability, in case two 
or more data bursts attempts to access a common output port 
simultaneously, one of them must be dropped. The dropped 
bursts will be lost since barebone OBS does not employ any 
buffering or burst contention resolution mechanism. It is worth 
noting that the burst contention losses occur even while the 
traffic load is low.  

• OBS with Burst Contention Resolution (BCR) 

In contrast to the barebone OBS networks, BCR OBS defines 
the efforts of burst contention resolution such as 
retransmission of the contended bursts at the edges [17][18], 
burst deflection routing [19][20], optical buffering [21], burst 
segmentation [22], and wavelength conversion [23], etc. With 
burst retransmission, deflection, or buffering, the bursts 
subject to contention in OBS domain can be retransmitted at 
the edge node, deflected to an alternate route at the core node, 
or buffered using FDL at the core node, respectively. Hence, 
the burst random contention, which is the case where a data 
burst is dropped when the channel utilization is low, may 
contribute to a significant portion of the total burst loss 
probability. With burst segmentation, the contended bursts are 
segmented at the core node such that the overlapped segments 
are discarded, while the rest of the burst can successfully be 
transmitted. With wavelength conversion, optical data flows 
on a certain wavelength can be converted to another 
wavelength, which can effectively reduce the resource 
segmentation and result in a better chance of successfully 
forming a data path.  

The above burst contention resolution schemes have been 
proved to effectively increase the transmission reliability and 
throughput in OBS network domain at the expense of 
introducing extra overhead, delay, and computation 
complexity, which will be discussed in details later.  

B. Characteristics of OBS Networks 

The bufferless nature of OBS results in two major 
transmission characteristics that distinguish OBS networks 
from any other type of networks, which are, (1) random burst 
contention losses at low traffic loads and (2) assembling 
(Burstification) and signaling delay. 

• Assembling (Burstification) and Signaling Delay  

Several burst-assembly algorithms were proposed for OBS 
networks and can be divided into the following four categories 
[12][13][14]. The first category is time-based in which a timer 
is set after the beginning of each new assembly cycle. With 
this assembly algorithm, all IP packets arriving within a 
specific period of time are considered to be assembled into a 
burst assuming they have a common destination edge node. 
The second set of algorithms is the burst-length-based, where 
a burst-length threshold is set. With these schemes, the burst 
length threshold serves as the minimum burst length before the 
burst leaves the network. The third category combines the 
time and the burst length-based, where the bursts are 
assembled and sent either when the burst-length exceeds the 
desirable threshold or the timer expires. The last category 
includes adaptive-assembly algorithms, where a dynamic 
adaptive-threshold on the burst length is set in order to 
optimize the overall performance in the OBS domain for QoS 
sensitive traffic [24]. Both barebone OBS and BCR OBS 
experience the burstification and burst signaling delays. 

• Random Burst Contention Losses 

In IP-based networks with electronic processing, contended 
packets can be temporarily stored in the memory of 
intermediate IP routers instead of being dropped immediately. 
Except for extreme cases such as buffer overflow caused by 
persistent network congestion, packets can be delivered in a 
hop-by-hop manner until it reaches the destination. 
Nonetheless, this is not the case in OBS networks. As a 
compromise between OCS and OPS networks, OBS facilitates 
some extent of statistical multiplexing by using JIT or JET 
resource-reservation schemes while buffering the bursts at the 
OBS edges only. Due to the adoption of a one-way signaling 
mechanism and the lack of global scheduling, burst contention 
and resultant dropping could happen even when the network is 
lightly loaded [12]. This is referred to as random burst 
contention losses, which may impose a significant vicious 
impact on the TCP protocol stacks especially for those which 
take packet-loss events as the only indication for network 
congestion. In contract with random burst contention losses, 
the network could be subject to persistent network congestion, 
where a high utilization state of the OBS network lasts for 
much longer time.    
 



 

C. Issues of TCP over OBS 

It has been shown that the burstification process at OBS edge 
nodes influences the performance of TCP Reno [25]. TCP 
flows are classified into three categories: fast, medium, and 
slow. In fast TCP flow category, TCP flow is subject to high 
IP-access bandwidth such that the entire transmitted segments 
of the cwnd are assembled in a single burst. On the other hand, 
the medium and slow flows have a proportion of TCP 
segments in the cwnd assembled in a single burst due to 
limited IP-access bandwidth. For medium to slow flows, a 
performance penalty is introduced on TCP sending rate due to 
assembly delay, while the aggregation of multiple TCP 
segments due to burst assembly has given TCP a throughput 
performance gain [25][26]. When a burst is lost either due to 
persistent network congestion or random burst contention loss, 
fast TCP flows returns to slow start since the TCP segments of 
the entire cwnd are lost, which indicates severe network 
congestion [27]. However, the medium and slow flows enter 
the fast retransmission stage since some of the TCP segments 
of the current cwnd are lost [27].  

• Multiple TCP Segments Loss 

In TCP over OBS networks, TCP performance is significantly 
affected by random burst contention loss [25][26][27], which 
causes unnecessary cwnd cut. Since an OBS edge may 
correspond to millions of TCP senders [3], hundreds or 
thousands of TCP segments could be assembled and 
transported together in a single burst. At the occurrence of a 
burst loss, the TCP with fast flows will be significantly 
affected by falling into the false congestion detection or also 
called false TO (FTO) [27]. However, in the case of medium 
and slow flows, the probability of having multiple segments of 
a single TCP session assembled in a single data burst is low, a 
burst loss will less influence a single TCP flow. However, it 
results of affecting a large number of TCP flows which has a 
segment assembled in the lost burst. Depending on the flow 
speed [25], TCP usually suffers from FTO [27] or perform 
unnecessary cwnd cuts [25][27].  

• Packet Reordering  

The out-of-order burst delivery may occur due to the burst 
assembly mechanism, where the TCP segments of certain TCP 
session are assembled in two or more bursts that are sent in a 
different order from that of the TCP segments. Also, bursts 
may be sent in a correct order but received out-of-order due to 
burst drop, retransmission or delays from deflection. The 
frequency of the out-of-order delivery depends on the time and 
burst-length thresholds, the traffic shape, or the QoS criteria 
defined in the burst assembly algorithm. The out-of-order 
delivery may cause a TCP sender to improperly retransmit a 
TCP segment since the TCP receiver will simply issue TD 
acks by assuming that there exists a sequence of missing 
segments. Depending on the number of the packets assembled 
in a single burst, TD acks can take place in a single round. The 
frequency of the false TD acks problem is expected to 
dramatically affect the sender in presence of a large number of 

TCP segments assembled in a single burst. The higher rate the 
TD acks occur, the smaller the TCP sender cwnd remains, 
which significantly throttles the throughput. This problem is 
also referred to as the global synchronization problem. 

• Slow Convergence 

For high-bandwidth TCP flows that last for a long period of 
time and span over long distances, the TCP throughput may 
suffer from a very long convergence time due to the slow 
additive-increase congestion avoidance mechanism. The 
following gives an example. Let we have a 10Gbps TCP flow 
with 1.5KB TCP packet size. Let the RTT be 100 ms. Thus, it 
takes about an hour to converge to the rate of 10 Gbps 
assuming that the packet loss rate is less than 10-8. The slow 
convergence problem is expected to be worsened in OBS 
networks due to a longer RTT of each data burst caused by the 
burstification process and BCL delay [28].  

With the additive increase of cwnd for each successful 
round of burst delivery, TCP over OBS networks may take a 
significant amount of time in converging to the available high 
bandwidth. On the other hand, the multiplicative decrease for 
each segment loss at the TCP senders is a critical response to 
the network congestion, even if we exclude the possibility of 
any burst drop due to random burst contention. Note that it is 
necessary to maintain a large cwnd to achieve a high 
throughput, which can only happen when an extremely low 
packet loss rate is seen. This is not likely to happen in 
presence of random burst losses in the OBS networks.  

D. Taxonomy of Solutions for TCP over OBS    

In bufferless OBS networks, TCP senders should not blindly 
consider the loss of the data segments as an indication of 
network congestion; instead, TCP should attempt to collect 
further information and network states to distinguish a packet-
loss event between due to random burst contention and 
persistent network congestion. TCP implementations of this 
category may require extra signaling efforts between the TCP 
senders and the OBS domain [27], and/or within the OBS 
domain [17][18][29]. In this paper, three categories of 
previously reported solution for improving TCP over OBS are 
briefly described as follows. 

• Link-Layer Solutions 

With link-layer solutions, the OBS domain is simply treated as 
the link layer underneath the IP edge routers. Thus, the OBS 
burst transmission is taken transparent to the upper TCP 
senders, where the TCP throughput is improved by adopting 
some mechanisms such as an adaptive-burstification algorithm 
[24], a forward-error-correction (FEC) mechanism, a burst-
contention resolution schemes, and automatic repeated request 
(ARQ) [17][18], etc. The fundamental advantage of 
employing a link-layer solution is to hide the non-congestion 
burst loss from the TCP senders, such that the layered 
structure of network protocols is followed by keeping local 
burst transmission reliability. To achieve this link-layer 
transmission reliability, burst retransmission, deflection, and 
adoption of FDLs in the OBS domain are common 



 

approaches. These approaches have contributed to reduce the 
cwnd fluctuation and consequently improve the TCP 
throughput at the expense of introducing additional delay and 
control overhead. In the rest of the article, we term the 
schemes functioning only within the OBS domain as link-
layer solutions to reflect the fact that the OBS domain can be 
simply taken as the link layer transmission seen by the IP 
routers. 

• Congestion Detection without Explicit Notifications 

With the solutions for congestion detection without explicit 
notifications, the TCP senders try to evaluate the states in the 
OBS domain by way of some equations, measured RTT, 
and/or statistic tools. In this case, TCP can maintain and 
analyze a number of previous RTTs at the TCP senders in 
order to identify if a packet loss event is due to persistent 
congestion or random burst contention. Under this category, 
we identify the following sender side congestion-control 
schemes, Statistical AIMD, Threshold-based Vegas, Burst 
TCP with burst length estimation (BLE), and OBS with 
General Additive Increase Multiplicative Decrease (BAIMD). 
There are other existing TCP solutions such as TCP Sack, 
duplicated Sack, and Fack that can work over OBS networks 
without explicit signaling [26][27]. These schemes are 
excluded from our review study since they are not originally 
proposed for OBS environments. However, the throughput 
performance of these TCP implementations over OBS 
networks has been examined through simulation in [43].  

In case of TCP fast flows, a burst that is successfully 
retransmitted, deflected, or buffered is subject to additional 
delay due to the contention-resolution mechanisms. The 
additional delay is inevitably added on top of the RTT of all 
the TCP segments assembled within the burst. In this case, the 
delay-based TCP sender (e.g., TCP Vegas) detects sudden 
increase in RTT of those segments, and interprets the 
additional delay as an indication of network congestion. This 
is another form of false congestion detection by the delay-
based TCP, which has been identified to fatally impair the 
TCP throughput due to unnecessary TO retransmissions 
followed by slow start at the TCP senders. Threshold-based 
TCP Vegas was proposed to cope with the above mentioned 
problem [49][50]. This scheme is considered a sender side 
TCP implementation that does not require any explicit 
notifications. 

• Congestion Detection with Explicit Notifications 

The solutions of congestion detection with explicit notification 
are basically cross-layer designed such that the states in the 
OBS domain can be leaked to the upper TCP senders. In this 
case, TCP senders can additionally be informed of the channel 
conditions and the actual cause of the packet loss, such as 
network congestion, packet corruption, or any possible 
hardware component failure. TCP senders will retransmit the 
lost segments without affecting their cwnd for packet losses 
due to any reason other than network congestion. This 
category folds the TCP implementations with explicit 
congestion or loss notifications such as OBS TCP (BTCP) 

(Back/BNack) and TCP with explicit burst contention losses 
(TCP-BCL). 

As a summary of this section, we have briefly introduced 
and classified the previously reported solutions for TCP in 
OBS networks. As shown in figure 4, the following three main 
categories were highlighted, namely, link-layer solutions, TCP 
congestion detection without explicit notifications, and TCP 
congestion detection with explicit notifications. 

 

 
Figure 4. The taxonomy of solutions for TCP in OBS networks 
 

III.   OVERVIEW OF EXISTING SOLUTIONS 

This section explicitly surveys all the three categories in the 
aspects of dropping-based (e.g., Reno), delay-based (e.g., 
Vegas), and the explicit notification (e.g., TCP ELN/ECN) 
based TCP implementations.  

A. Link-Layer Solutions 

• Solutions based on Burstification Processes  

It has been reported that the delay caused by the burstification 
process at the OBS ingress nodes will enlarge the TCP RTTs 
and may lead to TO in case the TO threshold is not well 
manipulated, which has a potential to impair the TCP 
throughput due to non-congestion caused cwnd cut 
[24][25][26]. In [25], the authors examined the performance of 
TCP Reno in presence of various burst assembly algorithms at 
OBS ingress nodes. The authors have shown that TCP with 
medium to slow speed suffers from significant performance 
degradation due to the fact that the assembly delay becomes 
very large with respect to the arrival of each TCP segment. On 
the other hand, the authors have shown that fast TCP flows are 
less influenced by the burstificaiton delay.  

The authors in [24] proposed an adaptive assembly-period 
(AAP) algorithm and investigated the impact of some 
configuration parameters, such as burst-assembly time, burst 
size, and threshold on adaptive assembly queue length, on the 
performance of both TCP and UDP traffic over OBS 
networks. The authors showed that the adaptive assembly 
algorithm supports achieving the best TCP performance 
among all the investigated assembly schemes. 

The study in [32] has taken TCP Reno flavour as a 
dominant TCP, where various burst assembly delays and burst 
sizes have been examined and simulated. The study concluded 
that TCP Reno has failed to deal with burst losses where each 
burst contains a large number of TCP segments assembled 
from a single TCP source. The study in [32] contributed with a 



 

TCP over OBS simulation package for NS-2 which has been 
later extend by other research institutions [40[48][49][50].  

• Burst Contention Loss Recovery 

As one of the link-layer solutions, BCR schemes can be 
employed in OBS domain in order to reduce random burst 
loss, thereby improving the transmission reliability of OBS 
networks. In many cases, the reported BCR schemes have 
successfully hided burst-loss events from the upper TCP 
senders at the expense of introducing extra transmission delay 
for the bursts that experience contention. Among the three 
approaches, FDLs facilitates the BCR by providing very 
limited buffering time for each contended burst. In general, 1 
ms of buffering time requires a fiber with a length of 200 km. 
Thus, the resultant delay could be limited as well. On the other 
hand, burst retransmission and deflection may introduce a 
significant amount of delay. Therefore, in this survey study, 
we will focus on both burst retransmission and deflection.   

With burst retransmission, the OBS edge node stores a copy 
of the launched bursts for possible retransmission. As the 
control packet traverses through the core nodes, the 
intermediate node that fails to reserve the resource will send 
an explicit notification to the OBS edge in order to report the 
reservation failure. Upon receiving the notification, the OBS 
edge retransmits a duplicate of the requested contending burst 
preceded by the corresponding control packet. The 
retransmitted burst will certainly experience an extra 
retransmission delay, which is the time elapsed between the 
initial control packet transmission and the last notification 
receipt for the corresponding burst.  
In the case that the network is lightly loaded, the 
retransmission scheme has a good chance of successfully 
delivering the contending bursts without involving the TCP 
retransmission mechanisms. The studies in [17] and [18] have 
shown that the retransmission scheme can significantly reduce 
the burst loss probability compared with that using a barebone 
OBS network, especially at low traffic load. The authors have 
also shown that retransmitting lost bursts from ingress nodes 
can avoid TCP false congestion detection. However, when the 
network is heavily loaded, the retransmitted bursts may still 
get blocked and finally lead to TO at the TCP senders. In this 
case, the retransmission persistence (or the maximum number 
of retransmissions for a single burst) and the time threshold at 
the OBS edge nodes before stopping the retransmission are 
important issues subject to further research efforts.  

With burst deflection, a data burst is routed through its 
primary path in case there is no burst contention. In the event 
of contention at the core node, the burst will be dynamically 
rerouted and directed to an alternative path segment starting at 
the core node where the burst encounters a contention. Since 
the primary path is usually the shortest path, the data bursts 
following the alternative path segment results in a longer 
propagation delay [19][20]. The study in [18] has investigated 
burst retransmission along with deflection routing, which 
showed that the deflection scheme can significantly reduce 
burst-loss probability at low traffic loads. The same as the case 
in burst retransmission, the extra delay induced by the 
deflection will cause some vicious effects on the delay-based 
TCP. In the case where the network is heavily congested, the 

deflection may worsen the situation by consuming more 
resources, which leads to a fatal impairment to the TCP 
throughput. 

• TCP with Burst Acknowledgement  

In [29], a TCP throughput analytical model is introduced by 
considering the burst-acknowledgment mechanism 
implemented in the OBS domain. The authors proposed an 
error recovery mechanism for electronic buffering at the edge 
nodes in order to improve the TCP throughput at the expense 
of taking extra memory space at the edge node for buffering a 
copy of all bursts within a certain time window. Once the 
amount of additional memory at the edge nodes becomes very 
large, the proposed scheme could be subject to a problem in 
practical implementation. Furthermore, introducing burst 
delivery acknowledgement violates the fundamental OBS 
burst transmission semantic. Let the edge node switching 
capacity be c, the number of IP packets be k, the average 
assembling granularity be M, and the burst dropping 
probability be Bdp. The required extra buffering space is c × 
(RTTburst + Bdp × (RTTburst + k×M)), where RTTburst includes the 
burst assembly time and the burst offset time. The scheme 
cannot prevent the TCP senders from receiving TO 
indications, where the cwnd could be decreased in response to 
the burst retransmission delay.  

• TCP Decoupling  

In [30], a modified TCP decoupling approach is introduced. 
This approach monitors the burst-contention probability at the 
OBS network bottleneck link by taking the advantage of the 
TCP self-clocking property, where the burst sending rate is 
controlled through the arrival time of TCP decoupling 
management packets. In this scheme, a virtual circuit (VC) is 
set up for each source to destination edge node pairs in OBS 
domain. The VC is controlled through the TCP congestion 
control located at the OBS edges such that the sending rate 
never exceeds the link capacity. The OBS edge node uses TCP 
ack packets to control the timing of the burst sending. 
Considering the simulation parameters provided in [30], the 
authors have demonstrated an improvement of TCP 
throughput by avoiding unnecessary burst losses, where the 
overall link utilization is increased from 50% to 62% and the 
packet dropping probability is decreased from 50% to 30%. 
However, this approach requires maintaining a record of the 
launched bursts, burst launch time, and the corresponding TCP 
segments for each source and destination pair. This approach 
complicates the OBS edge node architecture and functionality 
by manipulating the TCP packets (through TCP agents) at the 
OBS network. 

• Retransmission-Count Based Dropping Policy (RCDP)  

In [33] and [34], a dropping policy, called Retransmission-
Count based dropping policy, is introduced, which aims to 
improve TCP throughput. The basic idea of the dropping 
policy works at the OBS edge node by taking the number of 
burst retransmissions attempts into consideration, where the 
bursts that have been less retransmitted are dropped. It is 
known that the more frequently the burst retransmission takes 
place in the OBS domain, the less time remains for the TCP 



 

timeout to be triggered. The authors proposed to add a 
retransmission count (RC) field in the burst control packet 
with an initial value of 1. In the event of burst contention, the 
core node compares the control headers of the contending 
bursts and drops the bursts with lower RC values. The bursts 
with larger RC values are subject to higher priority of 
successful retransmission since their assembled TCP packets 
have already experienced relatively longer delay. Once a burst 
is dropped, the corresponding NAK along with a copy of the 
RC value is sent back to the OBS edge node, which sets the 
RC filed for the dropped burst to (RC_in_NAK+1) and 
retransmits the burst. The number of retransmission attempts 
follows a predefined retransmission policy. This study aims to 
increase the transmission chances of the TCP packets which 
have experienced the longest time in the OBS domain. 
However, the authors have not address the TCP fairness factor 
in the proposed dropping policy. Also, the preemption of 
reserved resources by the bursts with a larger RC values may 
lead to negative influences on the dropped flows which may 
have already launched the corresponding data burst.    

We observe that all the abovementioned link scheduling or 
signaling algorithms have demonstrated a reduction in the 
burst dropping probability, thus, increasing the overall 
network throughput. However, they have introduced extra 
switching architecture complexity and additional burst delay. 

B. Solutions with Explicit Notifications 

• Burst TCP (BTCP) 

The study in [27] investigated TCP false timeout detection due 
to random burst-contention loss under wide range of traffic 
loads. Two solutions were proposed that use explicit 
notification. The first approach of [27], called BTCP with 
burst acknowledgement (Back), each TCP packet is 
acknowledged by a TCP agent located at OBS edge nodes. 
This approach can effectively prevent TCP from detecting 
false TO; however, the end-to-end TCP semantics is violated 
since acks reach TCP senders before the actual completion of 
packet delivery. The second proposed approach in [27], called 
BTCP with burst negative acknowledgement (Nack), 
maintains a TCP agent at each OBS core node. Whenever a 
burst is dropped, the TCP agent disassembles the burst and 
sends a burst negative ack (BNack) to the corresponding TCP 
sender. The missing segments and the network congestion 
state are explicitly exchanged between the TCP senders and 
the OBS core nodes. In general, how to reduce the extra 
control overhead and the implementation complexity is a 
challenge when attempting to deploy the abovementioned 
solutions. 

• TCP with Burst Contention Loss Notifications 

The paper in [43] has addressed the issues in the design of 
various TCP flavours in the OBS environment. TCP Reno, 
New Reno, Sack, Duplicate Sack [44], Fack, Forward 
Retransmission Timeout Recovery (F-RTO) [45], Eifel [46], 
delayed congestion response (DCR) [47], BTCP [27], and 
BAIMD [40] have been examined in terms of throughput 
performance under a wide range of burst drop probabilities. 
Table I summarizes the experiment results. The measured 

performance evaluation of both DCR and F-RTO are based on 
TCP Sack. 

 
 

Schemes 
 

Suspicious  
TOs 

Packet 
reordering 

Multiple packet 
losses in a round 

Reno 
(Eifel) √   

New Reno 
(Eifel) √   

Sack (Eifel) √  √ 
DSack  √ √ 
Fack   √ 
DCR √ √ √ 

F-RTO  √ √ 
BTCP √ √ √ 

BAIMD √ √ √ 
    

 
Table I: TCP implementation performance over OBS. 

 
The simulation results have shown that the above TCP 

flavours have failed to well maintain a good throughput level 
in the presence of burst losses which contains multiple 
segments from a single TCP flow. Therefore, the Explicit 
Burst Contention-Loss Notification (BCL)-based TCP is 
introduced. The scheme aims to solve the false congestion 
detection problem in TCP over OBS networks and avoid the 
unnecessary cwnd reduction by adjusting TCP cwnd based on 
the utilization and burst dropping information carried in the 
explicit notification messages. This scheme considered the 
first study that integrates the explicit notification platform 
with the GAIMD framework over OBS networks. 

In this paper the authors proposed a novel mechanism for 
detecting network congestion in bufferless OBS networks. In 
OBS networks, congestion occurs at edge nodes when 
receiving packets in a much higher arrival rate (i.e., bursty 
impulse) than that the edge node is capable of dealing with. 
This causes the edge node to drop bursts due to buffer 
overflow. The authors refer the congestion at the network edge 
node as edge congestion. In addition to the edge congestion, 
the path congestion is defined, which leads to congestion in 
the network core nodes.  

The authors proposed two possible approaches for detecting 
congestion at the network core (i.e., path). The first approach 
is to delegate the congestion detection process to the core 
nodes. The edge nods receives explicit signals from the core 
switches indicating link congestion. Similar approach is 
proposed in BTCP with BNack [27]. It is notable that this 
approach may not be very practical since it increases the 
signaling and computation overhead at the core nodes. 
Therefore, the authors introduce a new mechanism for 
detecting congestion status along an OBS route (path) through 
the statistics gather at the corresponding edge node. This 
approach does not introduce any additional signaling effort at 
the core nodes. The path congestion is measured on how 
congested the route in the OBS domain is, which will be taken 
as an important index for the upper-layer TCP senders using 
the route to adjust their congestion windows.  



 

In this scheme, each OBS ingress edge node maintains long-
term and sort-term statistics for each route initiated at it. 
Whenever a burst-loss occurs, the ingress node determines if 
the route is in congestion by correlating the long-term and 
short-term statistics. In specific, let the parameter M be the 
number of transmitted burst along the OBS route, which is 
used to obtain the long-term statistics. Note that M should be 
sufficiently large in order to fully represent the intrinsic 
characteristics of the network topology, routing policy, and 
traffic pattern, etc. The outcome of the M burst deliveries is 
kept as a vector with each entry 0 or 1, which represents burst-
drop event or successful delivery, respectively. Let the 
parameter N be the number of transmitted burst for the short-
term burst drop rate, which is generally small.   

The main idea of the proposed scheme is to position the 
average short-term burst drop rate (denoted as avg_b_N) in the 
spectrum of long-term burst drop rate. To achieve this, the 

outcomes of the M burst deliveries are divided into M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

 

segments each contains the outcomes of consecutive N burst 
deliveries. Thus, it is possible to obtain a vector denoted as 
θ of a size 1 M

N
⎢ ⎥× ⎢ ⎥⎣ ⎦

, where each entry, denoted as θi for i = 1 to 

M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

, stores the burst drop rate of the i-th small segment of 

burst deliveries. With this vector, it is possible to obtain the 
average burst drop rate in the M burst deliveries (denoted as 
avg_b_M) and the variance of the vector (denoted as 
var_b_M). In case avg_b_N is much larger than avg_b_M, it is 
highly possible that the route in the OBS core is subject to 
random burst contention, and the corresponding TCP senders 
should not take it serious in the response of cwnd adjustment. 
On the other hand, with comparable avg_b_N and avg_b_M, 
we can expect that the current burst drop should be more 
likely an indication of congestion along the route in the OBS 
domain.  

In specific, to quantify the relationship between avg_b_N 
and avg_b_M, the authors assume that the burst-drop rate of 
each entry in θ  can be positioned in histogram distribution. 
Thus, it will be easy to position avg_b_N in the spectrum 
formed by the vector θ . A policy-based is created to define 
the relationship between avg_b_N and the spectrum formed by 
θ  in order to define the confidence with which a burst-loss 
event is due to network congestion is defined. A BCL is sent 
to the corresponding TCP senders if the burst loss is judged as 
due to contention at low traffic load. Thus, TCP-BCL has the 
TCP senders take every segment loss event as due to 
congestion when a BCL is not received. Figure 5 illustrates the 
proposed TCP-BCL congestion-control scheme. The proposed 
path congestion detection distinguishes TCP-BCL scheme 
from the BTCP in [27] since TCP-BCL only signals the 
dropped bursts at low link utilization, while BTCP 
(Back/BNack) reports the loss of every burst loss from core 
nodes. Hence, the number of notifications in TCP-BCL will be 
much less than that in BTCP. Furthermore, this design can 
significantly reduce the intra-domain signaling overhead as the 
edge node is the one responsible for detecting network 
congestion. This comes with the expense of introducing extra 
computation and signaling performed at the edge nodes. 

 

 
 
Figure 5. Flowchart of TCP-BCL over OBS 
 

C. Solutions without Explicit Notifications 

• Burst TCP with Burst Length Estimation 

The study in [27] proposed solving false TCP TOs using a 
burst length estimation approach. This approach, called BTCP 
with Burst Length Estimation (BLE), is based on estimating 
the number of TCP packets assembled in the burst without the 
knowledge of the burst assembly algorithm deployed at the 
OBS edge node. In addition to the cwnd, a burst congestion 
window denoted as burst_wd is also maintained. When the 
TCP sender detects TO, it first compares its cwnd with the 
burst_wd. If the cwnd ≤ burst_wd and burst_wd > 3, then the 
TCP sender considers this TO as a false TO. It half the cwnd 
and performe fast retransmission for the missing segments. In 
case cwnd > burst_wd or burst_wd ≤ 3, the TCP sender 
considers this TO event as a true TO and initiate normal TCP 
retransmission procedure. This approach does not require any 
coordination or explicit information exchange between the 
TCP senders and the OBS network. However, the accuracy of 
the estimated burst_wd remains an open research challenge. It 
is possible that a true TO can be taken as a false TO, which 
endanger the network’s stability. Furthermore, this approach 
can not distinguish the loss of multiple packets in a congested 
IP-access network from the loss of multiple packets in a burst 
loss caused by random burst contention loss.  

• Burst AIMD (BAIMD) 

The BAIMD [40] scheme is based on the framework of 
Generalized Additive Increase Multiplicative Decrease 
(GAIMD) [41][42] for cwnd adjustment. Two parameters are 
defined: α and β, which serve as the additive incremental and 
the reduction ratio for the cwnd at each TCP sender. Unlike 
conventional TCP,  where α and β are constantly set to be 1 
and 0.5, BAIMD dynamically determines the two parameters 



 

in such a way that the cwnd is increased by α segments for 
each acknowledged packet in a round and is decreases by β 
(0.5<β< 1) as for any packet-loss event. It is clear that 
BAIMD is more general than AIMD with much better design 
granularity and flexibility.  

With BAIMD, the sender is not explicitly notified about the 
used burst assembly mechanism and the reasons of the burst 
losses. Each sender treats a packet-loss event as a congestion 
loss. Obviously, this could lead to an overestimation of the 
network congestion by irrelevantly cutting the cwnd by a half 
for every TCP segment drop. To compensate this 
overestimation, BAIMD senders use β larger than 0.5. As 
such, the summarized effect of the burst-drop event is 
estimated when both the values of α and β are dynamically 
determined in the BAIMD senders using burst-level states 
(i.e., the estimated traffic load in OBS network). The scheme 
aims to achieve the best throughput for the competing flows. 
For example, if a burst is lost when the network load is low, 
the lost packets are considered due to random burst 
contention, and the multiplicative factor is set to be 0.5<β<1. 
Otherwise, β is set to 0.5 when network load is heavy and the 
burst dropping is due to congestion. 

One of the most important advantages of BAIMD is being 
simple where no burst-level window is maintained at the TCP 
senders, and no explicit notification specific to each launched 
TCP segment is exchanged between the OBS edge and the 
TCP senders. The scheme maintains clean separation between 
the control signaling at the TCP senders and OBS edge nodes. 
Most notably, BAIMD senders use RTT of each launched 
segment along with the number of TOs as references for 
sensing the network load. For example, data bursts are subject 
to extra buffering delay at the OBS edge nodes in response to 
serious network congestion. Thus, RTT substantially 
increases. On the other hand, if the data burst is dropped due 
to random burst contention in barebone OBS, the RTT 
remains unchanged. Thus, it is considered an indication of low 
network load.  Figure 6 illustrates the functionality of the 
BAIMD scheme. 

 

 
 
Figure 6. Flowchart of the BAIMD congestion control scheme 

BAIMD estimates the multiplicative factor β through 
estimating the traffic load at the OBS layer. BAIMD defines 
certain threshold-load value denoted by cgstl  for computing the 
multiplicative factor. When a packet loss occurs at time t and 
all the connected TCPs as well as BAIMD are notified either 
through TD or TO, the maximum link capacity has been 
reached at that moment. In the congestion state (i.e., the used 
threshold is 6.0≥cgstl ), the BAIMD senders behave similar to 
conventional TCP senders with β = 0.5. Otherwise, β 
follows

cgstl−= 1β where, 6.00 << cgstl . Once β is computed, 
BAIMD uses the GAIMD congestion control mechanism to 
obtained the sending rate α as follows  [76] [77] [78]. In the 
presence of TD loss, 3(1 ) (1 )α β β= − + , while in the case 

of TO loss, 24 (1 )
3

α β= − . 

• Statistical AIMD (SAIMD)  
In [48], the authors introduced a new congestion-control 
scheme for TCP over OBS networks, called Statistical 
Additive Increase Multiplicative Decrease (SAIMD). SAIMD 
maintains and analyzes a number of previous RTTs at the TCP 
senders in order to identify the confidence with which a packet 
loss event is due to network congestion. The confidence is 
derived by positioning short-term RTT in the spectrum of 
long-term historical RTTs. The derived confidence 
corresponding to the packet loss is taken in the developed 
policy for TCP congestion window adjustment.  

The SAIMD scheme adopts the framework of BAIMD to 
enhance the responsiveness of TCP upon any burst loss event 
that is not caused by congestion. In SAIMD, when a burst 
consisting of many TCP segments from single or multiple 
TCP senders is lost, the corresponding TCP senders are 
notified of the packet loss through receiving either TDed acks 
or TO. In either case, instead of halving the cwnd or even 
throttling to the slow start stage, TCP senders reduce their 
cwnd by the multiplicative factor β. The factor β is 
dynamically determined by positioning the short-term RTT 
statistics in the spectrum of long-term historical RTTs. Here, 
the “statistics” refers to mean, standard deviation, and 
correlation function in this study, and will be further detailed 
as follows.  

Two parameters in the proposed scheme, denoted as M and 
N, were introduced. The parameter M is the number of 
consecutive RTTs measured for the long-term statistics. M 
should be sufficiently large such that the derived statistics 
(i.e., the mean and standard deviation) can fully represent the 
intrinsic characteristics of the network topology, routing 
policy, and traffic distribution/pattern. The parameter N is the 
number of consecutive RTTs measured prior to a packet loss 
for the short-term statistics. The average of the N RTTs, 
denoted by avg_RTT_N, is compared with the average of the 
M RTTs, denoted by avg_RTT_M, in a TCP session, in order 
to determine how likely the packet loss is due to network 
congestion or due to random burst contention loss at a light-
loaded OBS network. In a packet loss event caused by random 
burst contention, avg_RTT_N is expected to be close to 
avg_RTT_M since the high utilization of network resources 



 

remains only a short time period in the N RTTs. A larger 
avg_RTT_N can be considered that a packet loss event is more 
likely due to network congestion rather than random burst 
contention.  

 

 
 

Figure 7. Flowchart of the SAIMD congestion control scheme  
 
The relationship between avg_RTT_M and avg_RTT_N is 

based on the following observations: (1) in TCP over OBS 
networks, packet losses can be caused by random burst 
contention in OBS core networks or network congestion along 
the route of IP access networks and OBS core networks. The 
difference between random burst contention and network 
congestion is that network congestion suffers from high 
resource utilization for a longer period; (2) in the high 
resource utilization state, the RTT of each packet delivery will 
be much higher than that in the low-utilization state. This is 
due to the fact that high-utilization will cause longer queuing 
delay in IP access networks. Also, in an OBS core network 
with contention resolution schemes, such as burst 
retransmission [17][18] and deflection [19][20] schemes, 
bursts will have a high probability of being retransmitted or 
deflected, which results in a longer average burst delay in the 
OBS network.  

Since the N RTTs are expected to provide sufficient 
information about the short-term network status when a packet 
is lost, the scheme uses the autocorrelation for selecting a 
proper value of N. If N is chosen too small or too larger, the 
short-term network status may not be accurately represented. 
The scheme defines an autocorrelation threshold value (γ) that 
determines N. In order to well-represent the short-term 
network status, the N RTTs should have a strong correlation 
with each other. Hence, the value of γ should be close to 1. In 
SAIMD, γ is taken as 90%. Figure 7 shows the congestion 
control of the proposed SAIMD scheme. 

Compared with the conventional AIMD based TCP scheme, 
the SAIMD causes additional overhead for maintaining the M 
RTTs along with the efforts in computing the autocorrelation 
and confidence intervals for the N RTTs. The cost is 
nonetheless a trade-off with the long convergence time in 
recovery from slow-start caused by false congestion detection. 
This is considered with essential importance for those high-
bandwidth TCP flows which may take hours or days to 
recover from a slow-start. Note that the computation for the 
autocorrelation and confidence interval is required only when 
a segment loss event occurs, and the computation complexity 
is almost a constant regardless of M and N. In addition, the 
proposed SAIMD scheme can mainly be used for long and 
high-bandwidth TCP flows instead of short TCP such as 
HTTP web services; thus, the resultant additional overhead to 
the whole network is expected to be trivial. 

• Threshold–based TCP Vegas  
In [49][50] the authors analyzed the performance of the delay-
based TCP (i.e., Vegas) over OBS with burst retransmission 
and deflection. The study has shown several issues observed 
when the conventional TCP Vegas congestion control 
mechanism is adopted in OBS networks. When a fixed source-
routing strategy is used, the packet delay experienced in the 
OBS domain is primarily the sum of burst assembly delay and 
link propagation delay, which do not vary when the traffic 
load changes in OBS networks. Hence, the conventional TCP 
Vegas cannot effectively detect network congestion in OBS 
domain. Furthermore, if all packets in the congestion window 
of TCP Vegas are assembled into a single burst, TCP Vegas 
may suffer from the false congestion detection problem, which 
fatally impairs the TCP throughput due to unnecessary TO 
retransmissions followed by slow start at TCP Vegas senders. 

When TCP Vegas runs over OBS networks with burst 
retransmission or deflection scheme, false congestion 
detection problem can be mitigated since both schemes incur 
extra delay for bursts that are retransmitted. Hence, TCP 
Vegas will detect the increases in RTTs for packets in bursts 
that are retransmitted, which may result in TCP Vegas 
reducing cwnd, leading to lower TCP throughput. If the 
increases in RTTs are caused by burst retransmission in a 
lightly-loaded OBS network, TCP Vegas should not reduce its 
cwnd. Hence, a modified TCP Vegas which able to tell 
whether the increase in RTTs is due to network congestion or 
due to retransmission in lightly-loaded OBS networks is 
introduced and evaluated in [49][50]. 

Based on the above observations, the authors proposed a 
threshold-based TCP Vegas scheme by introducing a new 
parameter, ,T  referred to as the threshold, to assist TCP Vegas 
to distinguish between network congestion and burst 
contentions at low traffic loads. In the proposed scheme, the 
TCP Vegas measures RTT for each packet sent and keeps 
track of the minimum measured RTTs of N  consecutive 
packets. Let )(iMinRTT  be the minimum measured RTTs of 
i )0( Ni <<  consecutive packets. In the ith round, if the 
measured RTT of the ith packet is larger than )1( −iMinRTT , 
it means that the ith packet was once queued in the access 
network and/or assembled in a burst that was retransmitted. A 



 

counter that keeps the number of packets whose RTTs are 
larger than their )1( −iMinRTT  will then be increased by 1. If 
the number of TCP packets whose RTTs are larger than their 

)1( −iMinRTT  is under the threshold T, TCP sender will stay 
with the Actual throughput calculated based on 

)1( −iMinRTT , even if the measured RTTs are increased. If 
the number of TCP packets whose RTTs are larger than their 

)1( −iMinRTT  exceeds the threshold T, it means that the 
network is congested. Hence the threshold-based Vegas 
recognizes the network congestion and calculates the Actual 
throughput as usual.  

The fundamental object of the threshold-based TCP Vegas 
is to reduce the sensitivity of TCP Vegas to the increases of 
RTTs caused by burst retransmission in the OBS domain. 
Instead of changing cwnd, the sensitivity of TCP Vegas can 
also be reduced by decreasing α or increasing β. However, 
changing α and β makes TCP Vegas difficult to estimate the 
available bandwidth in the networks. Figure 8 summarizes the 
proposed threshold-based TCP Vegas. 

 

 

Figure 8. The threshold-based TCP Vegas congestion control 
scheme. 
 

In the threshold-based TCP Vegas, the number of packets 
consecutively sent (denoted as N) and the threshold T should 
be chosen much larger than the number of packets from a 
single TCP Vegas connection that are assembled into a burst, 
such that TCP Vegas is able to detect the frequency of 
retransmission in the OBS domain based on a number of 
bursts. Usually, the packets from a TCP connection assembled 
in the same burst have the same measured RTT. By analyzing 
the variation pattern of packet RTTs, TCP Vegas can obtain 
the number of packets from a TCP Vegas connection that are 
assembled into a burst. Also, the relationship between the T 
and N affects the TCP performance. When T is chosen closer 
to N , there would be less remaining packets in the N 
consecutively packets to react to the detected congestion, 
which results in an ineffective response to the network 
congestion. Hence, we take ,iTN =  where 1>i . Defining 

proper values of T and N are subject to many factors such as 
the number of TCP flows, the TCP flow speed, and the burst 
assembly thresholds. An optimal values of T and N are 
derived in [63] using the fixed-point feedback mechanism 
proposed in [31]. 

Table II summarizes the features of the surveyed schemes in 
this review paper noting that BCR stands for solutions that 
works on OBS with burst contention resolution schemes.  

IV.   OPEN RESEARCH PROBLEMS 
Although TCP has been subject to extensive research efforts in 
the past decades, TCP over OBS is a relatively unexplored 
research area with limited number of studies that tackled some 
of the unique features in such a network scenarios. Through 
close analysis on the reported TCP enhancements listed in 
Table I and Table II, we observed that the most important 
characteristics and abilities that a congestion-control 
mechanism in TCP over OBS lie in the following three folds: 
(1) able to handle multiple TCP segment loss events in one 
round trip, (2) able to identify false TOs and burst losses under 
low traffic load situation, and (3) able to compensate the out-
of-order delivery in the OBS domain. In this section, we 
identify the open issues in the area of TCP over OBS in the 
following subsections. 

A. Integrating Link-Layer Solutions with TCP Performance  

Although with less efforts for TCP enhancements over OBS, 
there have been extensive studies reported in the OBS network 
that aim to reduce burst dropping, provide QoS in burst 
transmission, and conduct a cross-layer design optimization in 
terms of burst assembly delay, burst size, and burst delivery, 
etc. The link-layer schemes, such as adaptive assembly 
algorithms [24], burst retransmission [17][18], burst deflection 
[19][20], and FDLs [21], have successfully contributed in 
reducing burst loss probability at the expense of introducing 
extra delay and design complexity. It is important to integrate 
link-layer solutions with any mechanism for TCP throughput 
and reliability enhancements before OBS can be practically 
deployed in the Internet.  

We found that reducing the burst-dropping probability may 
not in all cases result in significant enhancement in the TCP 
throughput. For example, burst retransmission in OBS 
networks can greatly improve the TCP performance; however, 
the persistence of retransmission, deflection, or segmentation 
are subject to further considerations since too much 
persistence leads to TO in the TCP layer, which significantly 
throttles the TCP transmission. One of the most important 
challenges exist while tackling this problem is to properly 
define the TO threshold in the TCP senders in the presence of 
various traffic loads at edge and core nodes. The 
determination of the threshold value should take into 
consideration the number of successively assembled packets in 
single burst. A TCP snooping mechanism similar to some 
proposed schemes in wireless networks such as ATCP [56], 
ELN [10], JTCP [57], TCP Casablanca [58], and TCP Peach 
[59], can be developed to evaluate the persistence of burst 
retransmission by estimating the RTT. This enhancement aims 
to compromise the risk of having a false TO with the gain by 
performing burst retransmission or burst deflection routing.  



 

The research on TCP over OBS presented in BTCP [27], 
BAIMD [40], TCP-BCL [43], and SAIMD [48] have 
successfully resolved the vicious effects of false congestion 
detection due to the bufferless characteristic in the OBS 
networks. They improved the TCP sender reaction to each 
packet-loss event relevantly. However, each scheme suffers 
from some overhead as well, such as a high computation 
complexity and/or extra signaling in the OBS networks. Also, 
some of the above schemes may fail to overcome the problem 
of losing large number of packets assembled in a single burst. 
Furthermore, it is necessary to evaluate the convergence rate 
of TCP in presence of either a constant RTT in the barebone 
OBS or different values of RTT occurred due to the 
deployment of burst contention resolution schemes.  

B. TCP Convergence Rates for Large Bandwidth-Delay 
Product  Networks 

There exists a significant lack of performance evaluation on 
the TCP modifications proposed for a network environment 
with a large bandwidth-delay product over the OBS networks. 
Fast TCP [8][9], Binary increase congestion control (BIC) 
TCP [51], Explicit Control Protocol (XCP) [52], TCP with 
Simple Available Bandwidth Utilization Library (SABUL) 
[53], High Speed (HSTCP) [54], and Scalable TCP (STCP) 
[55], are among the most famous promising solutions. XCP 
has shown stability and efficiency using ECN through 
extending ECN and Core Stateless Fair Queue (CSFQ), which 
make XCP aware of the per-flow state and buffer size status. 
XCP uses Multiplicative Increase Multiplicative Decrease 
(MIMD) to control the congestion window, which increases 
the transmission by Δ (i.e., Δ = squares the bandwidth - the 
queue size). On the other hand, it uses AIMD to control the 
fairness. If Δ > 0, then divide by Δ equally between the co-
existing flows otherwise, divide Δ between flows 
proportionally to their current rates [52]. SABUL introduces a 
hybrid approach by merging the rate-based transmission via 
UDP and reliable retransmission via TCP, where a UDP 
channel is adopted for transmitting data at high rates, while a 
TCP channel is used to resend the missing data segments to 
ensure reliability [53]. Depending on the current cwnd, 
HSTCP uses a(cwnd) and b(cwnd) for computing the next 
window size. This scheme is known to be a safe incremental 
approach [54]. A simulation-based study for HSTCP over 
OBS is presented in [28]. Using small burst assembly delay 
and moderate burst dropping, the study shows that HSTCP 
throughput is severally affected. Scalable TCP (STCP) uses 
MIMD approach with sending rate 0.01 and multiplicative rate 
as 1/8. STCP is a sender-side TCP that offers a robust 
mechanism to improve performance in high-speed wide-area 
networks using traditional TCP receivers. STCP increases the 
TCP's cwnd by 0.01 for each acknowledged packet (not in the 
fast recovery stage), while cuts the cwnd by 0.875 for each 
packet-loss event [55]. 

There exist several proposed schemes that solve the TCP 
slow-convergence problem over high-speed networks. There is 
a need to evaluate the burst assembly delay and burst dropping 
over these TCP congestion-control algorithms. There are great 
opportunities for investigating the effect of the burst-assembly 

delay, burst dropping vs. packet aggregation gain on Fast 
TCP, Scalable TCP, XCP, and SAUBL. It is known that the 
above schemes can archive faster convergence of TCP 
throughput in large-bandwidth high-delay networks by quickly 
enlarging their cwnd. However, with large cwnd, the number 
of acks is significantly decreased. In the presence of random 
burst losses that contain a large number of acks packets results 
into dramatic damage in the TCP ack-clocking and forces TCP 
to fall into false detection of network congestion. Thus, 
retransmit an unnecessary large number of packets. 
Furthermore, the ack losses are expected to affect large 
number of TCP senders since the burst can assemble many 
acks packets due to their small size. Up to our knowledge, the 
effect of ack packet losses over OBS networks has not been 
addressed in the literature. 

C. Performance Modeling for TCP over OBS Networks 

The previously reported TCP over OBS performance 
modeling technique follows the packet-oriented approach 
[17][25][26][43][48][50]. These studies use Markov 
modulated Poisson arrival of the traffic [64]. In early 90’s, the 
fluid modeling technique proposed in [60] has added a new 
dimension for modeling large number of TCP flows. 
However, the fluid modeling approach requires maintaining 
few strict assumptions, such as (1) having very large number 
of TCP flows, (2) with Poisson arrival of loss events, and (3) 
with strong correlation between losses in one RTT while being 
independent among the other RTTs. Regarding the first 
assumption, there is no sufficient evidence that the number of 
TCP flows is sufficiently high at the OBS edge node. In OBS, 
since both random burst drops and dropping due to persistent 
congestion may occur, the second assumption is subject to 
further investigation. The third assumption can partially be 
justified as that in the barebone OBS the RTT is more or less 
fixed. This is because the third assumption can only hold for 
the TCP flows which can emit the TCP segments of their 
entire cwnd while being assembled in one burst (e.g.,  fast 
flows [25]). We conclude that using the fluid model for 
evaluating TCP throughput performance over OBS requires 
significant improvements before being considered accurate. 

The synchronization modeling approach proposed in [61] 
benefits from the ack-clocking to include the burstiness factor 
in the fluid model. Note that the fluid model assumes that 
there is no burstiness and the TCP rates of different flows are 
differentiable. Therefore, it may take infinitely long time to 
converge. The synchronization approach has been used for 
modeling Fast TCP and obtaining its stability by [61] and [62]. 
In order to obtain sufficient analysis for TCP performance 
while considering TCP stability, scalability and responsively, 
the synchronization modeling approach needs to capture the 
bufferless nature of OBS links (i.e., fixed TCP RTTs), the 
burst aggregation factors, and the burst-loss distribution.  

V.   CONCLUSIONS 
The research efforts of modifying and extending conventional 
TCP implementations have been extensively reported in the 
past years; however, relatively limited knowledge has been 



 

gained in terms of the impacts on in the upper layer 
applications when OBS is adopted underneath in presence of 
burst dropping at different traffic loads. This article provides a 
comprehensive review and tutorial on the previously reported 
congestion control schemes for TCP over OBS networks. With 
the taxonomy identified in this review article, these schemes 
are classified into three categories, including the link-layer 
solutions, the congestion detection mechanisms with and 
without explicit notifications between the OBS edge nodes 
and the TCP senders. We have enumerated and discussed each 

category in details, aiming to provide a complete picture on 
the development of TCP enhancements over the OBS 
networks. We have also presented some future research 
directions for TCP enhancements in presence of various OBS 
characteristics, including the scenarios of large bandwidth-
delay products, the schemes for protecting the TCP ack 
packets, and the extensions and elaborations of the existing 
modeling techniques (e.g., fluid and synchronization 
modeling), in order to capture the burst transmission 
characteristics for TCP over OBS networks.   

 

Schemes Solution 
Category OBS Type 

Devices Involved 
Explicit 

Notifications 

Problem Addressed 

TCP 
source 

OBS 
edge 

OBS 
core 

Random 
burst  
Loss 

Slow 
Convergence 

Packet 
Reordering 

Adaptive 
Assembly Period 

(AAP) 
link-layer barebone/BCR  √    √ √ 

Burst 
Retransmission link-layer BCR  √ √  √   

Deflection  
Routing link-layer BCR   √  √   

FDLs link-layer BCR   √  √   
Burst 

Segmentation link-layer BCR   √  √   

Wavelength 
Conversions link-layer BCR   √  √   

Retransmission-
Count Dropping  link-layer BCR  √ √  √ √  

TCP with Burst 
Acknowledgement  link-layer barebone/BCR √ √ √ √ √   

TCP Decoupling link-layer barebone/BCR √ √   √   
BTCP with Burst 
Length Estimation 

without 
Signaling  barebone/BCR √       

BTCP with Burst 
ack Signaling  barebone/BCR √ √  √ √   

BTCP with burst 
Nack Signaling  barebone/BCR √ √ √ √ √   

Burst AIMD without 
Signaling barebone/BCR √ √ √  √ √  

TCP-Burst 
Contention Loss Signaling barebone/BCR √ √ √ √ √ √ √ 

Statistical AIMD without 
Signaling barebone/BCR √    √ √ √ 

Threshold-based 
Vegas 

without 
Signaling BCR √    √  √ 

          
 
Table II: Overview of the surveyed OBS solutions for TCP. 
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Figure 1. An illustration of OBS networks 



 

 
 
Figure 2. OBS edge node architecture 
 



 

 
 

Figure 3. OBS core switch architecture 



 

 
 
 
Figure 4. The taxonomy of solutions for TCP in OBS networks 
 



 

 
 
Figure 5. Flowchart of TCP-BCL over OBS 
 



 

 
 
Figure 6. Flowchart of the BAIMD congestion control scheme 
 



 

 
 

Figure 7. Flowchart of the SAIMD congestion control scheme  
 



 

 

 

Figure 8. The threshold-based TCP Vegas congestion control scheme. 
 


