
I. INTRODUCTION
Currently, the complex Internet infrastructure interconnects
millions of communication devices and computing equipments
through wired and wireless connections. One of the key
success factors of today’s Internet infrastructure has greatly
relied on the ability of maintaining reliable, self-regulated, and
congestion-tolerant transport protocol that serves the end-user
applications. Transport Control Protocol (TCP) [1], which was
designed for military communication by ARPANET [2], has
been taken to serve as the most pervasive and well recognized
standard for a majority of currently available Internet-based
applications. While analyzing the statistical network data, it
has been reported that TCP is the most predominant protocol
in terms of the traffic volume (in Bytes), which may take up to
90% of the total Internet traffic [3]. The High-Performance
Computing (HPC) networks observed an average share of
83%, and for the NETI@Home data the authors found that
TCP flows contribute the major traffic volume seen in our
datasets.

A. Introduction on TCP

TCP congestion control mechanisms can be classified into the
following three categories: (1) loss-based (e.g., Reno [4] and
Sack [5]), (2) delay-based (e.g., TCP Vegas [6], Fast TCP
[8][9]), and (3) explicit notification-based (e.g., XCP [7]).
They are basically the approaches taken by a TCP sender to
determine if the network is in a congestion state such that the
transmission rate is adjusted accordingly, while the receiver
can be totally reactive to the transmission protocol.

The standard dropping-based TCP protocol stack, e.g., TCP
Reno, which follows an Additive Increase Multiplicative
Decrease (AIMD) window-based congestion control
mechanism for regulating data transmission and maintaining
network bandwidth usage simply takes a packet (or TCP
segment) dropping event as the indication of network
congestion. The AIMD framework is comprised of four stages
for each TCP sender: slow start, congestion avoidance, fast
transmission, and fast recovery [4].

At the slow start phase, the TCP sender has just started or
restarted transmitting due to a Timeout (TO) event and the
congestion window (cwnd) is initialized to the size of one
segment. The size of cwnd is exponentially increased at each
successfully delivered and acknowledged segment. The
exponential growth of the cwnd continues until either it
exceeds the receiver’s advertised cwnd or a packet loss is
reported, which leads the TCP protocol into the congestion
avoidance stage. Note that the network congestion state is
reported either when the transmission TO threshold is reached
or when the receiver collects triple-duplicated
acknowledgments (TD). In the former case where a TO event
occurs, which indicates a heavy congestion, the cwnd is set to
one segment, and the TCP returns to the slow start stage
followed by the congestion avoidance stage. In the latter case,
which indicates a light congestion, TCP enters the fast
retransmission stage by taking a half of the sender’s cwnd as
the slow start threshold ssthresh and setting the cwnd to
ssthresh plus three segments. Then the sender retransmits the
lost segment and increments its cwnd by the segment. After
acknowledging the second data segment, the cwnd is set to the
ssthresh.

BASEM SHIHADA, AND PIN-HAN HO, UNIVERSITY OF WATERLOO

ABSTRACT
Since its advent in 1981, TCP has been subject to a tremendous amount of research
efforts and enhancements for achieving better performance over various network
environments and application scenarios. Due to the transmission characteristics of
Optical Burst Switched (OBS) networks, such as random burst dropping, retro-
blocking (i.e., bursts proceeding or delayed from their actual reservation time slot),
burstification delay, and burst signaling delay, TCP could be significantly affected in
case no corresponding countermeasure and enhancement is developed. In this review
article, we provide a comprehensive survey on reported studies for TCP enhancements
over OBS networks in order to mitigate the numerous side effects due to the bufferless
characteristic of burst transmission. Furthermore, we closely analyze TCP behavior
over OBS networks with various burst transmission characteristics while highlighting
the open challenges that have not yet been extensively tackled or solved.

TRANSPORT CONTROL PROTOCOL IN OPTICAL BURST
SWITCHED NETWORKS: ISSUES, SOLUTIONS, AND

CHALLENGES

Different from the dropping-based TCP, delay-based TCP
implementations, such as TCP Vegas [6] and Fast TCP [8][9],
estimate the bandwidth and congestion status in the network
by measuring the delay of each packet transmission in terms
of round trip time (RTT). The performance of Fast TCP has
been evaluated in [8][9], which can be considered as an
enhancement of TCP Vegas with better throughput.
Nonetheless, in the following context will focus on the
introducing TCP Vegas congestion control scheme for better
comprehensiveness.

TCP Vegas modifies TCP Reno in the congestion
avoidance, slow start, and retransmission stages, which
determines the congestion status in the network according to
the comparison of estimated and measured throughputs. TCP
Vegas first computes BaseRTT as the minimum measured
RTT, which is mainly determined by the propagation delay
and the queuing delay. The Expected throughput can thus be
derived as /Expected cwnd BaseRTT= , where cwnd is the
current congestion window size. Second, the Actual
throughput is calculated for every RTT using the most recent
measured RTT: /Actual cwnd RTT= . TCP Vegas sender
then computes the difference between the two quantities
(denoted as Diff):

() , 0

()

(1).

Diff Expected Actual BaseRTT where Diff
cwnd cwnd BaseRTT

BaseRTT RTT
BaseRTTcwnd

RTT

= − >

= −

= −

Obviously, Diff is non-negative, and is used to adjust the next
cwnd. Vegas defines two threshold values, denoted as α and β,
for controlling the cwnd, which is changed as follows:

.
1

1

⎪
⎩

⎪
⎨

⎧

>−
≤≤

<+
=

β
βα

α

diffcwnd
diffcwnd

diffcwnd
cwnd

If α<Diff , Vegas increases cwnd linearly in the next round.
If ,β>Diff Vegas decreases cwnd linearly in the next round.
Otherwise, Vegas leaves the cwnd unchanged.

TCP Vegas congestion-avoidance mechanism aims to
maintain the expected number of backlog packets on-fly in the
network between α and β. If the Actual throughput is much
smaller than the Expected throughput, it is likely that the
network is congested, and TCP sender should reduce the flow
transmission rate. On the other hand, if the Actual throughput
is close to the Expected throughput, the connection may not be
utilizing the available bandwidth, and thus the flow rate
should be increased.

In slow start stage, TCP Vegas increases cwnd exponentially
only every other RTT, and exits slow start if cwnd reaches the
slow start threshold. In between the two consecutive RTTs, the
cwnd stays fixed in order to make a valid comparison between
the Expected and Actual throughput.

When TCP Vegas sender receives an acknowledgement
(ack), it records the clock and calculates the estimated RTT
using the current time and the timestamp recorded for the
associated packet. Vegas then decides whether to retransmit
the packet based on the following two conditions: First, when
a duplicated ack is received, Vegas checks if the difference

between the current time and the timestamp recorded for the
associated packet is greater than the TO value. If true, the
Vegas sender retransmits the packet without having to wait for
the remaining incoming duplicated acks. Second, when an ack
is received, if it is the first or the second ack after a
retransmission, Vegas again checks if the time interval since
the packet was sent is larger than the TO value. If it is, the
Vegas sender retransmits the packet. Since this will catch any
other packet that may have been lost prior to the
retransmission without having to wait for the remaining
duplicate ack, hence, Vegas retransmission mechanism
reduces the time in detecting a lost packet from the third
duplicate Ack to the first or the second. After the packet
retransmission is triggered by a duplicate ack, the cwnd is
reduced by 25% (instead of 50% in Reno) only if the time
since the last window size reduction is more than the current
RTT.

The third TCP congestion-control mechanism belongs to
explicit notification-based TCP. In this category, TCP with
Explicit Loss Notification (ELN) [10], or Explicit Congestion
Notification (ECN) [11] are the two representative
approaches, which were developed to identify suspicious
packet losses which may cause unnecessary retransmissions.
Furthermore, TCP ELN/ECN can distinguish packet losses
among congestion, contention, link failure, or other reasons.
The packet retransmission starts as soon as the ECN or ELN is
received, which is the round after the one that encounters a
packet loss.

B. Evolution of Optical Switching Technologies

Optical backbones based on WDM are the most prevalent
transportation carrier in modern communication networks.
Several switching technologies have been proposed to take
advantage of the high-transmission capacity of fiber optics.
Early approaches followed Optical Circuit Switched (OCS),
where point-to-point lightpaths are established for a relatively
long period of time. OCS follows the store and forward
approach where each optical switch performs optical-to-
electrical-to-optical (O/E/O) conversions. However, the rapid
increase in user demands and traffic engineering requirements
have imposed several limitations on the adoption of OCS.
First, since the number of available wavelengths is limited to
few tens or hundreds, the task of Routing and Wavelength
Assignment (RWA), which optimizes the assignment of
wavelengths to all users, is NP-Hard. Second, due to its quasi-
static nature, OCS can barely support dynamic traffic variation
and frequent connection requests.

Due to the ubiquity of the Internet Protocol (IP), much
research has addressed the integration of IP with WDM
networks. Optical Packet Switching (OPS) [13][14][24] has
been proposed to support this integration, where the optical
core can be taken as an extension of the IP layer. With OPS,
each optical packet consists of header and data payload and is
launched into the optical network. As packet arrives at an
optical switch, the header is converted and read in the
electronic domain to configure the switch fabric, while the
data is buffered optically in a fiber delay line (FDL) [21] until
the switch configuration is completed. OPS follows all-optical
(AO) buffer-oriented transmission approach. OPS can
successfully solve the inadequacy and inefficiency of the OCS

technology in terms of bandwidth provisioning, dynamics, and
capacity utilization. However, the technical barrier before such
highly synchronized system can be commercialized due to the
high cost of all-optical buffer facilities and the dimensioning
of these delay lines.

Optical Burst Switched (OBS) networks have attracted the
attention of researchers due to its ability to achieve more
dynamic and on-demand bandwidth allocation than OCS. It
also offers improved network economy and enables control
and management integration [13][14]. Compared with OPS,
OBS is more practical to implement, and combines the best of
OCS and OPS networks. With OBS, data burst is formed at
the edge node by assembling multiple incoming packets with
same destination and/or QoS requirements. To transfer the
burst to the destination, a corresponding control packet that
contains both the burst size and the burst arrival time is
created at the network edge node, and is sent prior to the
launch of the burst [13] [14]. Since the bursts cut-through each
intermediate node in the network core while the control
packets are subject to processing at each core node, certain
amount of offset time must be imposed between lunching
control packets and the corresponding bursts. The calculation
of the offset time has to consider the upper bound on number
of hops and nodal processing delay. OBS follows AO
transmission approach. With its out-of-band signaling
mechanism, OBS provides complete separation between
control and data domains that can yield better network
manageability and flexibility. Since the launched bursts cut-
through the network core without any buffering, the bursts can
be subject to a minimum amount of delay

C. Optical Burst Switched (OBS) Networks

OBS networks are basically bufferless yet best-effort in nature
[12][13][14][15][16]. Basically, with IP over OBS networks,
the IP applications and services are overlaid upon the OBS
backbone, and the two layers are interconnected through OBS
edge nodes and the corresponding IP routers. The term “OBS
domain” generally depicts the optical network with
Wavelength Division Multiplexing (WDM) technology
formed by a group of OBS edge and core nodes, which run a
suite of dedicated routing and signaling protocols. The OBS
domain routing and signaling protocols could be independent
from the upper IP compatible protocols, where an overlay
model is followed. Alternatively, the IP and OBS domains
may run a joint protocol by making the whole network into an
augmented service model, where some extent of routing and
traffic engineering information exchange is performed. Our
discussions in the paper focus on the latter case in order to
achieve a cross-layer design.

Within the OBS domain, a data burst is formed at an OBS
ingress edge node by assembling multiple incoming IP packets
with a common OBS egress node and similar quality of
service (QoS) requirements [12][13], as shown in figure 1.
Since each IP-access router is attached to an OBS edge node,
the OBS domain which provides high-speed transportation,
can serve as the link-layer transmission media for the IP-
access routers.

Src
1

Src
i

Src
2

Destination
1

Destination
2

Destination
3

Destination
j

Edge node buffer

Core Switch

Edge Router

Ctrl Packet

Control Channel

Data Burst
Offset
time

Figure 1. An illustration of OBS networks

The bufferless and AO nature make the OBS networks
distinguished from the traditional packet-switched networks
which significantly rely on the electronic processing capability
[12]. The implementation of OBS networks requires more
precise signaling and a much higher switching speed than that
required by Optical Circuit Switched (OCS) networks
[15][16]. The edge nodes are capable of performing
electronic-optical (E/O) and optical-electrical (O/E)
conversion to collect/sort/assemble incoming IP packets from
the higher layers into optical data bursts, and dissemble the
optical data bursts back to the IP packets at the destination
edge nodes. The edge nodes are also responsible for signaling
and routing in the OBS domain. The core switches, on the
other hand, are subject to configuration requests via control
packets sent by the OBS edge nodes, where the data bursts are
forwarded and cut through the OBS domain in an AO manner
[12][13][14][15][16].

A burst contains several other fields when assembled at the
edge node. Figure 2 illustrates the burst assembly process as
well as the burst format. A burst consists of Guard Preamble
(Guard-B) and Guard Postamble (Guard-E) fields that help to
overcome the uncertainty of data burst arrival time and data
burst duration due to clock drifts between different core nodes.
The payload basically consists of the assembled incoming data
packets. Payload Type (PT), Payload Length (PL), and
Number of Packets (NOP) represent the type of data, data
length, and number of packets assembled in the burst,
respectively. The offset of padding indicates the first byte of
padding. The Optical Layer Information (OLI) includes some
information for performance monitoring and forward error
correction obtained from the communication channels [13].

Figure 2. OBS edge node architecture

Typically, an OBS core node (switch) consists two layers.
The upper layer is responsible for processing control packets
and configuring the switching fabric. In this layer, control
packets are processed, switching resources are reserved, and
switching resources are freed after the burst cut-through the
switch. The switch matrix control unit and the port forwarding
table, which is a lookup table and link scheduling
[35][36][37][38][39] module are maintained. The lower layer
is responsible for all-optical burst transport functionality. The
lower layer consists of optical ports, wavelengths, and optical-
to-optical connections. Figure 3 illustrates the generic OBS
core switch architecture.

Figure 3. OBS core switch architecture

Fixed-path routing is a general approach taken in the OBS

domain, where a physical route is pre-defined for each pair of
OBS edge nodes. In order to deliver a burst from the source
OBS edge to a certain remote one, a corresponding control
packet that keeps the length of the burst and the arrival time of
the burst at each intermediate node of the given route is
created at the edge node and is sent prior to the launching of
the data burst [15]. Since the burst cuts-through the
intermediate core nodes without any processing delay, the
control packet is intrinsically slower than the burst. In order to
prevent the burst from catching-up with its control packet, it is
important to define offset time between the time instants of
lunching the burst and the control packet [15][16] as shown in
figure 2 and 3. This is also referred to as delayed reservation,
which serves as the basis for OBS operation. The offset time is
added to the average delay of the burst delivery with its
minimum value determined by the number of hops along the
route that the control packet traverses through. Then the data
burst cuts-through the network following their control packet
in a one-way (i.e., Tell-and-Go) signaling fashion.

Although OBS can achieve much better flexibility and
efficiency than the OCS based wavelength-routed networks,
OBS suffers from burst contention which leads to burst drop
due to the one-way resource reservation signaling and the lack
of optical buffering. Burst contention occurs when more than
one burst simultaneously attempt to take a common output
port or wavelength channel [12][13], which results in dropping
n – 1 bursts when there are n contended bursts. Burst
retransmission [17][18], burst deflection routing [19][20],
Fiber Optic Delay Lines (FDL) [21], burst segmentation [22],
and wavelength conversions [23] are some reported

approaches for increasing the reliability of the burst
transmission in the OBS domain. Each scheme has imposed
some impacts on TCP performance, which motivated
numerous related studies to be seen in the past decade.

D. Overview of the Article

The goal of this article is to give an overview on the state of
the art of TCP developments over OBS networks, including
the recent proposed modifications and research challenges in
such a deployment scenario. In addition, we are committed to
conduct a comprehensive survey and tutorial on the reported
solutions in TCP over OBS networks by classifying them into
the following three categories: (1) link-layer solutions (i.e.,
solutions implemented at OBS domain), (2) modifications or
enhancements based on conventional TCP (TCP originally
designed for IP packet-switched networks), and (3) newly
designed TCP congestion-control mechanisms.

With the first category, the solutions, which aim to asset
TCP in understanding various burst transmission behaviors,
require an implementation of additional supporting functions
at either the OBS edge node or the OBS core node. Generally
there are two problems incurred in this solution category.
First, it breaks the TCP end-to-end semantics. Second, it
introductions additional control overhead that impair the
applicability of the scheme. The solutions in the second
category can overcome the abovementioned problems by
preserving the end-to-end semantics of TCP congestion
control such that no extra signaling overhead is required by
any intermediate network device except for the TCP senders
and receivers. However, the price is paid at the effectiveness
of the scheme, which may make TCP senders hard to follow
the fluctuation of network congestion state in the OBS
domain. Finally, the third category of solutions includes a
totally new transport protocol that copes with the underlying
burst transport behaviors.

The rest of the paper is organized as follows. In Section II,
the issues of running TCP over OBS networks are identified,
where the problems due to the bufferless transmission
characteristics in the OBS networks are formulated. In Section
III, a comprehensive survey is given on the recently proposed
solutions for TCP over OBS networks in all the three
categories. Further discussions on the algorithms and some
open research problems are given in Section IV. Finally, we
summarize and conclude the paper in Section V.

II. ISSUES OF TCP OVER OBS NETWORKS
In this section, the taxonomy of OBS networks, namely,
barebone OBS and burst contention resolution (BCR) OBS,
are introduced. The transmission characteristics of each type
are further identified. Afterwards, we discuss the fundamental
problems of running TCP over both types of OBS networks.

A. Taxonomy of OBS Networks

Considering the OBS resource-reservation-signaling
mechanisms, implicit [15] and explicit [16] resource
reservations have been reported. In terms of burst assembly
mechanisms, time-based, burst-length-based, mixed (both time

and burst length), and optimized burst-size-based OBS
networks have been reported [12][13][14]. Since burst
contention resolution mechanisms play vital role in the
deployment of TCP over OBS, this article classifies OBS
networks according to whether there exist any burst contention
resolution mechanism in OBS domain, where two categories
can be derived, namely barebone OBS and burst contention
resolution (BCR) OBS.

• Barebone OBS
In barebone OBS, control packet is sent to reserve the
intermediate switching fabric in a one-way signaling scheme.
After a predefined offset time, the burst cuts-through certain
path until it reaches the destination. In literature, two major
resource-reservation protocols in OBS domain, called Just-In-
Time (JIT) and Just-Enough-Time (JET) are widely
investigated. The JIT resource-reservation protocol introduced
in [16] follows the explicit-reservation approach. Upon
receiving the control packet, the switching fabric is reserved.
The control message continues traveling on hop-by-hop basis
followed by the data burst until the destination is reached.
Once the burst leaves the edge node, a tear-down packet is
sent along the same route to release the reserved resources.

The JET resource-reservation protocol introduced in [15]
follows the delayed reservation with implicit resource release
approach. The intermediate core nodes which are traversed by
the burst can automatically release the reserved switching
fabric shortly after the burst leaves the switch. Since both
schemes never guarantee the channel availability, in case two
or more data bursts attempts to access a common output port
simultaneously, one of them must be dropped. The dropped
bursts will be lost since barebone OBS does not employ any
buffering or burst contention resolution mechanism. It is worth
noting that the burst contention losses occur even while the
traffic load is low.

• OBS with Burst Contention Resolution (BCR)

In contrast to the barebone OBS networks, BCR OBS defines
the efforts of burst contention resolution such as
retransmission of the contended bursts at the edges [17][18],
burst deflection routing [19][20], optical buffering [21], burst
segmentation [22], and wavelength conversion [23], etc. With
burst retransmission, deflection, or buffering, the bursts
subject to contention in OBS domain can be retransmitted at
the edge node, deflected to an alternate route at the core node,
or buffered using FDL at the core node, respectively. Hence,
the burst random contention, which is the case where a data
burst is dropped when the channel utilization is low, may
contribute to a significant portion of the total burst loss
probability. With burst segmentation, the contended bursts are
segmented at the core node such that the overlapped segments
are discarded, while the rest of the burst can successfully be
transmitted. With wavelength conversion, optical data flows
on a certain wavelength can be converted to another
wavelength, which can effectively reduce the resource
segmentation and result in a better chance of successfully
forming a data path.

The above burst contention resolution schemes have been
proved to effectively increase the transmission reliability and
throughput in OBS network domain at the expense of
introducing extra overhead, delay, and computation
complexity, which will be discussed in details later.

B. Characteristics of OBS Networks

The bufferless nature of OBS results in two major
transmission characteristics that distinguish OBS networks
from any other type of networks, which are, (1) random burst
contention losses at low traffic loads and (2) assembling
(Burstification) and signaling delay.

• Assembling (Burstification) and Signaling Delay

Several burst-assembly algorithms were proposed for OBS
networks and can be divided into the following four categories
[12][13][14]. The first category is time-based in which a timer
is set after the beginning of each new assembly cycle. With
this assembly algorithm, all IP packets arriving within a
specific period of time are considered to be assembled into a
burst assuming they have a common destination edge node.
The second set of algorithms is the burst-length-based, where
a burst-length threshold is set. With these schemes, the burst
length threshold serves as the minimum burst length before the
burst leaves the network. The third category combines the
time and the burst length-based, where the bursts are
assembled and sent either when the burst-length exceeds the
desirable threshold or the timer expires. The last category
includes adaptive-assembly algorithms, where a dynamic
adaptive-threshold on the burst length is set in order to
optimize the overall performance in the OBS domain for QoS
sensitive traffic [24]. Both barebone OBS and BCR OBS
experience the burstification and burst signaling delays.

• Random Burst Contention Losses

In IP-based networks with electronic processing, contended
packets can be temporarily stored in the memory of
intermediate IP routers instead of being dropped immediately.
Except for extreme cases such as buffer overflow caused by
persistent network congestion, packets can be delivered in a
hop-by-hop manner until it reaches the destination.
Nonetheless, this is not the case in OBS networks. As a
compromise between OCS and OPS networks, OBS facilitates
some extent of statistical multiplexing by using JIT or JET
resource-reservation schemes while buffering the bursts at the
OBS edges only. Due to the adoption of a one-way signaling
mechanism and the lack of global scheduling, burst contention
and resultant dropping could happen even when the network is
lightly loaded [12]. This is referred to as random burst
contention losses, which may impose a significant vicious
impact on the TCP protocol stacks especially for those which
take packet-loss events as the only indication for network
congestion. In contract with random burst contention losses,
the network could be subject to persistent network congestion,
where a high utilization state of the OBS network lasts for
much longer time.

C. Issues of TCP over OBS

It has been shown that the burstification process at OBS edge
nodes influences the performance of TCP Reno [25]. TCP
flows are classified into three categories: fast, medium, and
slow. In fast TCP flow category, TCP flow is subject to high
IP-access bandwidth such that the entire transmitted segments
of the cwnd are assembled in a single burst. On the other hand,
the medium and slow flows have a proportion of TCP
segments in the cwnd assembled in a single burst due to
limited IP-access bandwidth. For medium to slow flows, a
performance penalty is introduced on TCP sending rate due to
assembly delay, while the aggregation of multiple TCP
segments due to burst assembly has given TCP a throughput
performance gain [25][26]. When a burst is lost either due to
persistent network congestion or random burst contention loss,
fast TCP flows returns to slow start since the TCP segments of
the entire cwnd are lost, which indicates severe network
congestion [27]. However, the medium and slow flows enter
the fast retransmission stage since some of the TCP segments
of the current cwnd are lost [27].

• Multiple TCP Segments Loss

In TCP over OBS networks, TCP performance is significantly
affected by random burst contention loss [25][26][27], which
causes unnecessary cwnd cut. Since an OBS edge may
correspond to millions of TCP senders [3], hundreds or
thousands of TCP segments could be assembled and
transported together in a single burst. At the occurrence of a
burst loss, the TCP with fast flows will be significantly
affected by falling into the false congestion detection or also
called false TO (FTO) [27]. However, in the case of medium
and slow flows, the probability of having multiple segments of
a single TCP session assembled in a single data burst is low, a
burst loss will less influence a single TCP flow. However, it
results of affecting a large number of TCP flows which has a
segment assembled in the lost burst. Depending on the flow
speed [25], TCP usually suffers from FTO [27] or perform
unnecessary cwnd cuts [25][27].

• Packet Reordering

The out-of-order burst delivery may occur due to the burst
assembly mechanism, where the TCP segments of certain TCP
session are assembled in two or more bursts that are sent in a
different order from that of the TCP segments. Also, bursts
may be sent in a correct order but received out-of-order due to
burst drop, retransmission or delays from deflection. The
frequency of the out-of-order delivery depends on the time and
burst-length thresholds, the traffic shape, or the QoS criteria
defined in the burst assembly algorithm. The out-of-order
delivery may cause a TCP sender to improperly retransmit a
TCP segment since the TCP receiver will simply issue TD
acks by assuming that there exists a sequence of missing
segments. Depending on the number of the packets assembled
in a single burst, TD acks can take place in a single round. The
frequency of the false TD acks problem is expected to
dramatically affect the sender in presence of a large number of

TCP segments assembled in a single burst. The higher rate the
TD acks occur, the smaller the TCP sender cwnd remains,
which significantly throttles the throughput. This problem is
also referred to as the global synchronization problem.

• Slow Convergence

For high-bandwidth TCP flows that last for a long period of
time and span over long distances, the TCP throughput may
suffer from a very long convergence time due to the slow
additive-increase congestion avoidance mechanism. The
following gives an example. Let we have a 10Gbps TCP flow
with 1.5KB TCP packet size. Let the RTT be 100 ms. Thus, it
takes about an hour to converge to the rate of 10 Gbps
assuming that the packet loss rate is less than 10-8. The slow
convergence problem is expected to be worsened in OBS
networks due to a longer RTT of each data burst caused by the
burstification process and BCL delay [28].

With the additive increase of cwnd for each successful
round of burst delivery, TCP over OBS networks may take a
significant amount of time in converging to the available high
bandwidth. On the other hand, the multiplicative decrease for
each segment loss at the TCP senders is a critical response to
the network congestion, even if we exclude the possibility of
any burst drop due to random burst contention. Note that it is
necessary to maintain a large cwnd to achieve a high
throughput, which can only happen when an extremely low
packet loss rate is seen. This is not likely to happen in
presence of random burst losses in the OBS networks.

D. Taxonomy of Solutions for TCP over OBS

In bufferless OBS networks, TCP senders should not blindly
consider the loss of the data segments as an indication of
network congestion; instead, TCP should attempt to collect
further information and network states to distinguish a packet-
loss event between due to random burst contention and
persistent network congestion. TCP implementations of this
category may require extra signaling efforts between the TCP
senders and the OBS domain [27], and/or within the OBS
domain [17][18][29]. In this paper, three categories of
previously reported solution for improving TCP over OBS are
briefly described as follows.

• Link-Layer Solutions

With link-layer solutions, the OBS domain is simply treated as
the link layer underneath the IP edge routers. Thus, the OBS
burst transmission is taken transparent to the upper TCP
senders, where the TCP throughput is improved by adopting
some mechanisms such as an adaptive-burstification algorithm
[24], a forward-error-correction (FEC) mechanism, a burst-
contention resolution schemes, and automatic repeated request
(ARQ) [17][18], etc. The fundamental advantage of
employing a link-layer solution is to hide the non-congestion
burst loss from the TCP senders, such that the layered
structure of network protocols is followed by keeping local
burst transmission reliability. To achieve this link-layer
transmission reliability, burst retransmission, deflection, and
adoption of FDLs in the OBS domain are common

approaches. These approaches have contributed to reduce the
cwnd fluctuation and consequently improve the TCP
throughput at the expense of introducing additional delay and
control overhead. In the rest of the article, we term the
schemes functioning only within the OBS domain as link-
layer solutions to reflect the fact that the OBS domain can be
simply taken as the link layer transmission seen by the IP
routers.

• Congestion Detection without Explicit Notifications

With the solutions for congestion detection without explicit
notifications, the TCP senders try to evaluate the states in the
OBS domain by way of some equations, measured RTT,
and/or statistic tools. In this case, TCP can maintain and
analyze a number of previous RTTs at the TCP senders in
order to identify if a packet loss event is due to persistent
congestion or random burst contention. Under this category,
we identify the following sender side congestion-control
schemes, Statistical AIMD, Threshold-based Vegas, Burst
TCP with burst length estimation (BLE), and OBS with
General Additive Increase Multiplicative Decrease (BAIMD).
There are other existing TCP solutions such as TCP Sack,
duplicated Sack, and Fack that can work over OBS networks
without explicit signaling [26][27]. These schemes are
excluded from our review study since they are not originally
proposed for OBS environments. However, the throughput
performance of these TCP implementations over OBS
networks has been examined through simulation in [43].

In case of TCP fast flows, a burst that is successfully
retransmitted, deflected, or buffered is subject to additional
delay due to the contention-resolution mechanisms. The
additional delay is inevitably added on top of the RTT of all
the TCP segments assembled within the burst. In this case, the
delay-based TCP sender (e.g., TCP Vegas) detects sudden
increase in RTT of those segments, and interprets the
additional delay as an indication of network congestion. This
is another form of false congestion detection by the delay-
based TCP, which has been identified to fatally impair the
TCP throughput due to unnecessary TO retransmissions
followed by slow start at the TCP senders. Threshold-based
TCP Vegas was proposed to cope with the above mentioned
problem [49][50]. This scheme is considered a sender side
TCP implementation that does not require any explicit
notifications.

• Congestion Detection with Explicit Notifications

The solutions of congestion detection with explicit notification
are basically cross-layer designed such that the states in the
OBS domain can be leaked to the upper TCP senders. In this
case, TCP senders can additionally be informed of the channel
conditions and the actual cause of the packet loss, such as
network congestion, packet corruption, or any possible
hardware component failure. TCP senders will retransmit the
lost segments without affecting their cwnd for packet losses
due to any reason other than network congestion. This
category folds the TCP implementations with explicit
congestion or loss notifications such as OBS TCP (BTCP)

(Back/BNack) and TCP with explicit burst contention losses
(TCP-BCL).

As a summary of this section, we have briefly introduced
and classified the previously reported solutions for TCP in
OBS networks. As shown in figure 4, the following three main
categories were highlighted, namely, link-layer solutions, TCP
congestion detection without explicit notifications, and TCP
congestion detection with explicit notifications.

Figure 4. The taxonomy of solutions for TCP in OBS networks

III. OVERVIEW OF EXISTING SOLUTIONS

This section explicitly surveys all the three categories in the
aspects of dropping-based (e.g., Reno), delay-based (e.g.,
Vegas), and the explicit notification (e.g., TCP ELN/ECN)
based TCP implementations.

A. Link-Layer Solutions

• Solutions based on Burstification Processes

It has been reported that the delay caused by the burstification
process at the OBS ingress nodes will enlarge the TCP RTTs
and may lead to TO in case the TO threshold is not well
manipulated, which has a potential to impair the TCP
throughput due to non-congestion caused cwnd cut
[24][25][26]. In [25], the authors examined the performance of
TCP Reno in presence of various burst assembly algorithms at
OBS ingress nodes. The authors have shown that TCP with
medium to slow speed suffers from significant performance
degradation due to the fact that the assembly delay becomes
very large with respect to the arrival of each TCP segment. On
the other hand, the authors have shown that fast TCP flows are
less influenced by the burstificaiton delay.

The authors in [24] proposed an adaptive assembly-period
(AAP) algorithm and investigated the impact of some
configuration parameters, such as burst-assembly time, burst
size, and threshold on adaptive assembly queue length, on the
performance of both TCP and UDP traffic over OBS
networks. The authors showed that the adaptive assembly
algorithm supports achieving the best TCP performance
among all the investigated assembly schemes.

The study in [32] has taken TCP Reno flavour as a
dominant TCP, where various burst assembly delays and burst
sizes have been examined and simulated. The study concluded
that TCP Reno has failed to deal with burst losses where each
burst contains a large number of TCP segments assembled
from a single TCP source. The study in [32] contributed with a

TCP over OBS simulation package for NS-2 which has been
later extend by other research institutions [40[48][49][50].

• Burst Contention Loss Recovery

As one of the link-layer solutions, BCR schemes can be
employed in OBS domain in order to reduce random burst
loss, thereby improving the transmission reliability of OBS
networks. In many cases, the reported BCR schemes have
successfully hided burst-loss events from the upper TCP
senders at the expense of introducing extra transmission delay
for the bursts that experience contention. Among the three
approaches, FDLs facilitates the BCR by providing very
limited buffering time for each contended burst. In general, 1
ms of buffering time requires a fiber with a length of 200 km.
Thus, the resultant delay could be limited as well. On the other
hand, burst retransmission and deflection may introduce a
significant amount of delay. Therefore, in this survey study,
we will focus on both burst retransmission and deflection.

With burst retransmission, the OBS edge node stores a copy
of the launched bursts for possible retransmission. As the
control packet traverses through the core nodes, the
intermediate node that fails to reserve the resource will send
an explicit notification to the OBS edge in order to report the
reservation failure. Upon receiving the notification, the OBS
edge retransmits a duplicate of the requested contending burst
preceded by the corresponding control packet. The
retransmitted burst will certainly experience an extra
retransmission delay, which is the time elapsed between the
initial control packet transmission and the last notification
receipt for the corresponding burst.
In the case that the network is lightly loaded, the
retransmission scheme has a good chance of successfully
delivering the contending bursts without involving the TCP
retransmission mechanisms. The studies in [17] and [18] have
shown that the retransmission scheme can significantly reduce
the burst loss probability compared with that using a barebone
OBS network, especially at low traffic load. The authors have
also shown that retransmitting lost bursts from ingress nodes
can avoid TCP false congestion detection. However, when the
network is heavily loaded, the retransmitted bursts may still
get blocked and finally lead to TO at the TCP senders. In this
case, the retransmission persistence (or the maximum number
of retransmissions for a single burst) and the time threshold at
the OBS edge nodes before stopping the retransmission are
important issues subject to further research efforts.

With burst deflection, a data burst is routed through its
primary path in case there is no burst contention. In the event
of contention at the core node, the burst will be dynamically
rerouted and directed to an alternative path segment starting at
the core node where the burst encounters a contention. Since
the primary path is usually the shortest path, the data bursts
following the alternative path segment results in a longer
propagation delay [19][20]. The study in [18] has investigated
burst retransmission along with deflection routing, which
showed that the deflection scheme can significantly reduce
burst-loss probability at low traffic loads. The same as the case
in burst retransmission, the extra delay induced by the
deflection will cause some vicious effects on the delay-based
TCP. In the case where the network is heavily congested, the

deflection may worsen the situation by consuming more
resources, which leads to a fatal impairment to the TCP
throughput.

• TCP with Burst Acknowledgement

In [29], a TCP throughput analytical model is introduced by
considering the burst-acknowledgment mechanism
implemented in the OBS domain. The authors proposed an
error recovery mechanism for electronic buffering at the edge
nodes in order to improve the TCP throughput at the expense
of taking extra memory space at the edge node for buffering a
copy of all bursts within a certain time window. Once the
amount of additional memory at the edge nodes becomes very
large, the proposed scheme could be subject to a problem in
practical implementation. Furthermore, introducing burst
delivery acknowledgement violates the fundamental OBS
burst transmission semantic. Let the edge node switching
capacity be c, the number of IP packets be k, the average
assembling granularity be M, and the burst dropping
probability be Bdp. The required extra buffering space is c ×
(RTTburst + Bdp × (RTTburst + k×M)), where RTTburst includes the
burst assembly time and the burst offset time. The scheme
cannot prevent the TCP senders from receiving TO
indications, where the cwnd could be decreased in response to
the burst retransmission delay.

• TCP Decoupling

In [30], a modified TCP decoupling approach is introduced.
This approach monitors the burst-contention probability at the
OBS network bottleneck link by taking the advantage of the
TCP self-clocking property, where the burst sending rate is
controlled through the arrival time of TCP decoupling
management packets. In this scheme, a virtual circuit (VC) is
set up for each source to destination edge node pairs in OBS
domain. The VC is controlled through the TCP congestion
control located at the OBS edges such that the sending rate
never exceeds the link capacity. The OBS edge node uses TCP
ack packets to control the timing of the burst sending.
Considering the simulation parameters provided in [30], the
authors have demonstrated an improvement of TCP
throughput by avoiding unnecessary burst losses, where the
overall link utilization is increased from 50% to 62% and the
packet dropping probability is decreased from 50% to 30%.
However, this approach requires maintaining a record of the
launched bursts, burst launch time, and the corresponding TCP
segments for each source and destination pair. This approach
complicates the OBS edge node architecture and functionality
by manipulating the TCP packets (through TCP agents) at the
OBS network.

• Retransmission-Count Based Dropping Policy (RCDP)

In [33] and [34], a dropping policy, called Retransmission-
Count based dropping policy, is introduced, which aims to
improve TCP throughput. The basic idea of the dropping
policy works at the OBS edge node by taking the number of
burst retransmissions attempts into consideration, where the
bursts that have been less retransmitted are dropped. It is
known that the more frequently the burst retransmission takes
place in the OBS domain, the less time remains for the TCP

timeout to be triggered. The authors proposed to add a
retransmission count (RC) field in the burst control packet
with an initial value of 1. In the event of burst contention, the
core node compares the control headers of the contending
bursts and drops the bursts with lower RC values. The bursts
with larger RC values are subject to higher priority of
successful retransmission since their assembled TCP packets
have already experienced relatively longer delay. Once a burst
is dropped, the corresponding NAK along with a copy of the
RC value is sent back to the OBS edge node, which sets the
RC filed for the dropped burst to (RC_in_NAK+1) and
retransmits the burst. The number of retransmission attempts
follows a predefined retransmission policy. This study aims to
increase the transmission chances of the TCP packets which
have experienced the longest time in the OBS domain.
However, the authors have not address the TCP fairness factor
in the proposed dropping policy. Also, the preemption of
reserved resources by the bursts with a larger RC values may
lead to negative influences on the dropped flows which may
have already launched the corresponding data burst.

We observe that all the abovementioned link scheduling or
signaling algorithms have demonstrated a reduction in the
burst dropping probability, thus, increasing the overall
network throughput. However, they have introduced extra
switching architecture complexity and additional burst delay.

B. Solutions with Explicit Notifications

• Burst TCP (BTCP)

The study in [27] investigated TCP false timeout detection due
to random burst-contention loss under wide range of traffic
loads. Two solutions were proposed that use explicit
notification. The first approach of [27], called BTCP with
burst acknowledgement (Back), each TCP packet is
acknowledged by a TCP agent located at OBS edge nodes.
This approach can effectively prevent TCP from detecting
false TO; however, the end-to-end TCP semantics is violated
since acks reach TCP senders before the actual completion of
packet delivery. The second proposed approach in [27], called
BTCP with burst negative acknowledgement (Nack),
maintains a TCP agent at each OBS core node. Whenever a
burst is dropped, the TCP agent disassembles the burst and
sends a burst negative ack (BNack) to the corresponding TCP
sender. The missing segments and the network congestion
state are explicitly exchanged between the TCP senders and
the OBS core nodes. In general, how to reduce the extra
control overhead and the implementation complexity is a
challenge when attempting to deploy the abovementioned
solutions.

• TCP with Burst Contention Loss Notifications

The paper in [43] has addressed the issues in the design of
various TCP flavours in the OBS environment. TCP Reno,
New Reno, Sack, Duplicate Sack [44], Fack, Forward
Retransmission Timeout Recovery (F-RTO) [45], Eifel [46],
delayed congestion response (DCR) [47], BTCP [27], and
BAIMD [40] have been examined in terms of throughput
performance under a wide range of burst drop probabilities.
Table I summarizes the experiment results. The measured

performance evaluation of both DCR and F-RTO are based on
TCP Sack.

Schemes

Suspicious
TOs

Packet
reordering

Multiple packet
losses in a round

Reno
(Eifel) √

New Reno
(Eifel) √

Sack (Eifel) √ √
DSack √ √
Fack √
DCR √ √ √

F-RTO √ √
BTCP √ √ √

BAIMD √ √ √

Table I: TCP implementation performance over OBS.

The simulation results have shown that the above TCP

flavours have failed to well maintain a good throughput level
in the presence of burst losses which contains multiple
segments from a single TCP flow. Therefore, the Explicit
Burst Contention-Loss Notification (BCL)-based TCP is
introduced. The scheme aims to solve the false congestion
detection problem in TCP over OBS networks and avoid the
unnecessary cwnd reduction by adjusting TCP cwnd based on
the utilization and burst dropping information carried in the
explicit notification messages. This scheme considered the
first study that integrates the explicit notification platform
with the GAIMD framework over OBS networks.

In this paper the authors proposed a novel mechanism for
detecting network congestion in bufferless OBS networks. In
OBS networks, congestion occurs at edge nodes when
receiving packets in a much higher arrival rate (i.e., bursty
impulse) than that the edge node is capable of dealing with.
This causes the edge node to drop bursts due to buffer
overflow. The authors refer the congestion at the network edge
node as edge congestion. In addition to the edge congestion,
the path congestion is defined, which leads to congestion in
the network core nodes.

The authors proposed two possible approaches for detecting
congestion at the network core (i.e., path). The first approach
is to delegate the congestion detection process to the core
nodes. The edge nods receives explicit signals from the core
switches indicating link congestion. Similar approach is
proposed in BTCP with BNack [27]. It is notable that this
approach may not be very practical since it increases the
signaling and computation overhead at the core nodes.
Therefore, the authors introduce a new mechanism for
detecting congestion status along an OBS route (path) through
the statistics gather at the corresponding edge node. This
approach does not introduce any additional signaling effort at
the core nodes. The path congestion is measured on how
congested the route in the OBS domain is, which will be taken
as an important index for the upper-layer TCP senders using
the route to adjust their congestion windows.

In this scheme, each OBS ingress edge node maintains long-
term and sort-term statistics for each route initiated at it.
Whenever a burst-loss occurs, the ingress node determines if
the route is in congestion by correlating the long-term and
short-term statistics. In specific, let the parameter M be the
number of transmitted burst along the OBS route, which is
used to obtain the long-term statistics. Note that M should be
sufficiently large in order to fully represent the intrinsic
characteristics of the network topology, routing policy, and
traffic pattern, etc. The outcome of the M burst deliveries is
kept as a vector with each entry 0 or 1, which represents burst-
drop event or successful delivery, respectively. Let the
parameter N be the number of transmitted burst for the short-
term burst drop rate, which is generally small.

The main idea of the proposed scheme is to position the
average short-term burst drop rate (denoted as avg_b_N) in the
spectrum of long-term burst drop rate. To achieve this, the

outcomes of the M burst deliveries are divided into M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

segments each contains the outcomes of consecutive N burst
deliveries. Thus, it is possible to obtain a vector denoted as
θ of a size 1 M

N
⎢ ⎥× ⎢ ⎥⎣ ⎦

, where each entry, denoted as θi for i = 1 to

M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

, stores the burst drop rate of the i-th small segment of

burst deliveries. With this vector, it is possible to obtain the
average burst drop rate in the M burst deliveries (denoted as
avg_b_M) and the variance of the vector (denoted as
var_b_M). In case avg_b_N is much larger than avg_b_M, it is
highly possible that the route in the OBS core is subject to
random burst contention, and the corresponding TCP senders
should not take it serious in the response of cwnd adjustment.
On the other hand, with comparable avg_b_N and avg_b_M,
we can expect that the current burst drop should be more
likely an indication of congestion along the route in the OBS
domain.

In specific, to quantify the relationship between avg_b_N
and avg_b_M, the authors assume that the burst-drop rate of
each entry in θ can be positioned in histogram distribution.
Thus, it will be easy to position avg_b_N in the spectrum
formed by the vector θ . A policy-based is created to define
the relationship between avg_b_N and the spectrum formed by
θ in order to define the confidence with which a burst-loss
event is due to network congestion is defined. A BCL is sent
to the corresponding TCP senders if the burst loss is judged as
due to contention at low traffic load. Thus, TCP-BCL has the
TCP senders take every segment loss event as due to
congestion when a BCL is not received. Figure 5 illustrates the
proposed TCP-BCL congestion-control scheme. The proposed
path congestion detection distinguishes TCP-BCL scheme
from the BTCP in [27] since TCP-BCL only signals the
dropped bursts at low link utilization, while BTCP
(Back/BNack) reports the loss of every burst loss from core
nodes. Hence, the number of notifications in TCP-BCL will be
much less than that in BTCP. Furthermore, this design can
significantly reduce the intra-domain signaling overhead as the
edge node is the one responsible for detecting network
congestion. This comes with the expense of introducing extra
computation and signaling performed at the edge nodes.

Figure 5. Flowchart of TCP-BCL over OBS

C. Solutions without Explicit Notifications

• Burst TCP with Burst Length Estimation

The study in [27] proposed solving false TCP TOs using a
burst length estimation approach. This approach, called BTCP
with Burst Length Estimation (BLE), is based on estimating
the number of TCP packets assembled in the burst without the
knowledge of the burst assembly algorithm deployed at the
OBS edge node. In addition to the cwnd, a burst congestion
window denoted as burst_wd is also maintained. When the
TCP sender detects TO, it first compares its cwnd with the
burst_wd. If the cwnd ≤ burst_wd and burst_wd > 3, then the
TCP sender considers this TO as a false TO. It half the cwnd
and performe fast retransmission for the missing segments. In
case cwnd > burst_wd or burst_wd ≤ 3, the TCP sender
considers this TO event as a true TO and initiate normal TCP
retransmission procedure. This approach does not require any
coordination or explicit information exchange between the
TCP senders and the OBS network. However, the accuracy of
the estimated burst_wd remains an open research challenge. It
is possible that a true TO can be taken as a false TO, which
endanger the network’s stability. Furthermore, this approach
can not distinguish the loss of multiple packets in a congested
IP-access network from the loss of multiple packets in a burst
loss caused by random burst contention loss.

• Burst AIMD (BAIMD)

The BAIMD [40] scheme is based on the framework of
Generalized Additive Increase Multiplicative Decrease
(GAIMD) [41][42] for cwnd adjustment. Two parameters are
defined: α and β, which serve as the additive incremental and
the reduction ratio for the cwnd at each TCP sender. Unlike
conventional TCP, where α and β are constantly set to be 1
and 0.5, BAIMD dynamically determines the two parameters

in such a way that the cwnd is increased by α segments for
each acknowledged packet in a round and is decreases by β
(0.5<β< 1) as for any packet-loss event. It is clear that
BAIMD is more general than AIMD with much better design
granularity and flexibility.

With BAIMD, the sender is not explicitly notified about the
used burst assembly mechanism and the reasons of the burst
losses. Each sender treats a packet-loss event as a congestion
loss. Obviously, this could lead to an overestimation of the
network congestion by irrelevantly cutting the cwnd by a half
for every TCP segment drop. To compensate this
overestimation, BAIMD senders use β larger than 0.5. As
such, the summarized effect of the burst-drop event is
estimated when both the values of α and β are dynamically
determined in the BAIMD senders using burst-level states
(i.e., the estimated traffic load in OBS network). The scheme
aims to achieve the best throughput for the competing flows.
For example, if a burst is lost when the network load is low,
the lost packets are considered due to random burst
contention, and the multiplicative factor is set to be 0.5<β<1.
Otherwise, β is set to 0.5 when network load is heavy and the
burst dropping is due to congestion.

One of the most important advantages of BAIMD is being
simple where no burst-level window is maintained at the TCP
senders, and no explicit notification specific to each launched
TCP segment is exchanged between the OBS edge and the
TCP senders. The scheme maintains clean separation between
the control signaling at the TCP senders and OBS edge nodes.
Most notably, BAIMD senders use RTT of each launched
segment along with the number of TOs as references for
sensing the network load. For example, data bursts are subject
to extra buffering delay at the OBS edge nodes in response to
serious network congestion. Thus, RTT substantially
increases. On the other hand, if the data burst is dropped due
to random burst contention in barebone OBS, the RTT
remains unchanged. Thus, it is considered an indication of low
network load. Figure 6 illustrates the functionality of the
BAIMD scheme.

Figure 6. Flowchart of the BAIMD congestion control scheme

BAIMD estimates the multiplicative factor β through
estimating the traffic load at the OBS layer. BAIMD defines
certain threshold-load value denoted by cgstl for computing the
multiplicative factor. When a packet loss occurs at time t and
all the connected TCPs as well as BAIMD are notified either
through TD or TO, the maximum link capacity has been
reached at that moment. In the congestion state (i.e., the used
threshold is 6.0≥cgstl), the BAIMD senders behave similar to
conventional TCP senders with β = 0.5. Otherwise, β
follows

cgstl−= 1β where, 6.00 << cgstl . Once β is computed,
BAIMD uses the GAIMD congestion control mechanism to
obtained the sending rate α as follows [76] [77] [78]. In the
presence of TD loss, 3(1) (1)α β β= − + , while in the case

of TO loss, 24 (1)
3

α β= − .

• Statistical AIMD (SAIMD)
In [48], the authors introduced a new congestion-control
scheme for TCP over OBS networks, called Statistical
Additive Increase Multiplicative Decrease (SAIMD). SAIMD
maintains and analyzes a number of previous RTTs at the TCP
senders in order to identify the confidence with which a packet
loss event is due to network congestion. The confidence is
derived by positioning short-term RTT in the spectrum of
long-term historical RTTs. The derived confidence
corresponding to the packet loss is taken in the developed
policy for TCP congestion window adjustment.

The SAIMD scheme adopts the framework of BAIMD to
enhance the responsiveness of TCP upon any burst loss event
that is not caused by congestion. In SAIMD, when a burst
consisting of many TCP segments from single or multiple
TCP senders is lost, the corresponding TCP senders are
notified of the packet loss through receiving either TDed acks
or TO. In either case, instead of halving the cwnd or even
throttling to the slow start stage, TCP senders reduce their
cwnd by the multiplicative factor β. The factor β is
dynamically determined by positioning the short-term RTT
statistics in the spectrum of long-term historical RTTs. Here,
the “statistics” refers to mean, standard deviation, and
correlation function in this study, and will be further detailed
as follows.

Two parameters in the proposed scheme, denoted as M and
N, were introduced. The parameter M is the number of
consecutive RTTs measured for the long-term statistics. M
should be sufficiently large such that the derived statistics
(i.e., the mean and standard deviation) can fully represent the
intrinsic characteristics of the network topology, routing
policy, and traffic distribution/pattern. The parameter N is the
number of consecutive RTTs measured prior to a packet loss
for the short-term statistics. The average of the N RTTs,
denoted by avg_RTT_N, is compared with the average of the
M RTTs, denoted by avg_RTT_M, in a TCP session, in order
to determine how likely the packet loss is due to network
congestion or due to random burst contention loss at a light-
loaded OBS network. In a packet loss event caused by random
burst contention, avg_RTT_N is expected to be close to
avg_RTT_M since the high utilization of network resources

remains only a short time period in the N RTTs. A larger
avg_RTT_N can be considered that a packet loss event is more
likely due to network congestion rather than random burst
contention.

Figure 7. Flowchart of the SAIMD congestion control scheme

The relationship between avg_RTT_M and avg_RTT_N is

based on the following observations: (1) in TCP over OBS
networks, packet losses can be caused by random burst
contention in OBS core networks or network congestion along
the route of IP access networks and OBS core networks. The
difference between random burst contention and network
congestion is that network congestion suffers from high
resource utilization for a longer period; (2) in the high
resource utilization state, the RTT of each packet delivery will
be much higher than that in the low-utilization state. This is
due to the fact that high-utilization will cause longer queuing
delay in IP access networks. Also, in an OBS core network
with contention resolution schemes, such as burst
retransmission [17][18] and deflection [19][20] schemes,
bursts will have a high probability of being retransmitted or
deflected, which results in a longer average burst delay in the
OBS network.

Since the N RTTs are expected to provide sufficient
information about the short-term network status when a packet
is lost, the scheme uses the autocorrelation for selecting a
proper value of N. If N is chosen too small or too larger, the
short-term network status may not be accurately represented.
The scheme defines an autocorrelation threshold value (γ) that
determines N. In order to well-represent the short-term
network status, the N RTTs should have a strong correlation
with each other. Hence, the value of γ should be close to 1. In
SAIMD, γ is taken as 90%. Figure 7 shows the congestion
control of the proposed SAIMD scheme.

Compared with the conventional AIMD based TCP scheme,
the SAIMD causes additional overhead for maintaining the M
RTTs along with the efforts in computing the autocorrelation
and confidence intervals for the N RTTs. The cost is
nonetheless a trade-off with the long convergence time in
recovery from slow-start caused by false congestion detection.
This is considered with essential importance for those high-
bandwidth TCP flows which may take hours or days to
recover from a slow-start. Note that the computation for the
autocorrelation and confidence interval is required only when
a segment loss event occurs, and the computation complexity
is almost a constant regardless of M and N. In addition, the
proposed SAIMD scheme can mainly be used for long and
high-bandwidth TCP flows instead of short TCP such as
HTTP web services; thus, the resultant additional overhead to
the whole network is expected to be trivial.

• Threshold–based TCP Vegas
In [49][50] the authors analyzed the performance of the delay-
based TCP (i.e., Vegas) over OBS with burst retransmission
and deflection. The study has shown several issues observed
when the conventional TCP Vegas congestion control
mechanism is adopted in OBS networks. When a fixed source-
routing strategy is used, the packet delay experienced in the
OBS domain is primarily the sum of burst assembly delay and
link propagation delay, which do not vary when the traffic
load changes in OBS networks. Hence, the conventional TCP
Vegas cannot effectively detect network congestion in OBS
domain. Furthermore, if all packets in the congestion window
of TCP Vegas are assembled into a single burst, TCP Vegas
may suffer from the false congestion detection problem, which
fatally impairs the TCP throughput due to unnecessary TO
retransmissions followed by slow start at TCP Vegas senders.

When TCP Vegas runs over OBS networks with burst
retransmission or deflection scheme, false congestion
detection problem can be mitigated since both schemes incur
extra delay for bursts that are retransmitted. Hence, TCP
Vegas will detect the increases in RTTs for packets in bursts
that are retransmitted, which may result in TCP Vegas
reducing cwnd, leading to lower TCP throughput. If the
increases in RTTs are caused by burst retransmission in a
lightly-loaded OBS network, TCP Vegas should not reduce its
cwnd. Hence, a modified TCP Vegas which able to tell
whether the increase in RTTs is due to network congestion or
due to retransmission in lightly-loaded OBS networks is
introduced and evaluated in [49][50].

Based on the above observations, the authors proposed a
threshold-based TCP Vegas scheme by introducing a new
parameter, ,T referred to as the threshold, to assist TCP Vegas
to distinguish between network congestion and burst
contentions at low traffic loads. In the proposed scheme, the
TCP Vegas measures RTT for each packet sent and keeps
track of the minimum measured RTTs of N consecutive
packets. Let)(iMinRTT be the minimum measured RTTs of
i)0(Ni << consecutive packets. In the ith round, if the
measured RTT of the ith packet is larger than)1(−iMinRTT ,
it means that the ith packet was once queued in the access
network and/or assembled in a burst that was retransmitted. A

counter that keeps the number of packets whose RTTs are
larger than their)1(−iMinRTT will then be increased by 1. If
the number of TCP packets whose RTTs are larger than their

)1(−iMinRTT is under the threshold T, TCP sender will stay
with the Actual throughput calculated based on

)1(−iMinRTT , even if the measured RTTs are increased. If
the number of TCP packets whose RTTs are larger than their

)1(−iMinRTT exceeds the threshold T, it means that the
network is congested. Hence the threshold-based Vegas
recognizes the network congestion and calculates the Actual
throughput as usual.

The fundamental object of the threshold-based TCP Vegas
is to reduce the sensitivity of TCP Vegas to the increases of
RTTs caused by burst retransmission in the OBS domain.
Instead of changing cwnd, the sensitivity of TCP Vegas can
also be reduced by decreasing α or increasing β. However,
changing α and β makes TCP Vegas difficult to estimate the
available bandwidth in the networks. Figure 8 summarizes the
proposed threshold-based TCP Vegas.

Figure 8. The threshold-based TCP Vegas congestion control
scheme.

In the threshold-based TCP Vegas, the number of packets
consecutively sent (denoted as N) and the threshold T should
be chosen much larger than the number of packets from a
single TCP Vegas connection that are assembled into a burst,
such that TCP Vegas is able to detect the frequency of
retransmission in the OBS domain based on a number of
bursts. Usually, the packets from a TCP connection assembled
in the same burst have the same measured RTT. By analyzing
the variation pattern of packet RTTs, TCP Vegas can obtain
the number of packets from a TCP Vegas connection that are
assembled into a burst. Also, the relationship between the T
and N affects the TCP performance. When T is chosen closer
to N , there would be less remaining packets in the N
consecutively packets to react to the detected congestion,
which results in an ineffective response to the network
congestion. Hence, we take ,iTN = where 1>i . Defining

proper values of T and N are subject to many factors such as
the number of TCP flows, the TCP flow speed, and the burst
assembly thresholds. An optimal values of T and N are
derived in [63] using the fixed-point feedback mechanism
proposed in [31].

Table II summarizes the features of the surveyed schemes in
this review paper noting that BCR stands for solutions that
works on OBS with burst contention resolution schemes.

IV. OPEN RESEARCH PROBLEMS
Although TCP has been subject to extensive research efforts in
the past decades, TCP over OBS is a relatively unexplored
research area with limited number of studies that tackled some
of the unique features in such a network scenarios. Through
close analysis on the reported TCP enhancements listed in
Table I and Table II, we observed that the most important
characteristics and abilities that a congestion-control
mechanism in TCP over OBS lie in the following three folds:
(1) able to handle multiple TCP segment loss events in one
round trip, (2) able to identify false TOs and burst losses under
low traffic load situation, and (3) able to compensate the out-
of-order delivery in the OBS domain. In this section, we
identify the open issues in the area of TCP over OBS in the
following subsections.

A. Integrating Link-Layer Solutions with TCP Performance

Although with less efforts for TCP enhancements over OBS,
there have been extensive studies reported in the OBS network
that aim to reduce burst dropping, provide QoS in burst
transmission, and conduct a cross-layer design optimization in
terms of burst assembly delay, burst size, and burst delivery,
etc. The link-layer schemes, such as adaptive assembly
algorithms [24], burst retransmission [17][18], burst deflection
[19][20], and FDLs [21], have successfully contributed in
reducing burst loss probability at the expense of introducing
extra delay and design complexity. It is important to integrate
link-layer solutions with any mechanism for TCP throughput
and reliability enhancements before OBS can be practically
deployed in the Internet.

We found that reducing the burst-dropping probability may
not in all cases result in significant enhancement in the TCP
throughput. For example, burst retransmission in OBS
networks can greatly improve the TCP performance; however,
the persistence of retransmission, deflection, or segmentation
are subject to further considerations since too much
persistence leads to TO in the TCP layer, which significantly
throttles the TCP transmission. One of the most important
challenges exist while tackling this problem is to properly
define the TO threshold in the TCP senders in the presence of
various traffic loads at edge and core nodes. The
determination of the threshold value should take into
consideration the number of successively assembled packets in
single burst. A TCP snooping mechanism similar to some
proposed schemes in wireless networks such as ATCP [56],
ELN [10], JTCP [57], TCP Casablanca [58], and TCP Peach
[59], can be developed to evaluate the persistence of burst
retransmission by estimating the RTT. This enhancement aims
to compromise the risk of having a false TO with the gain by
performing burst retransmission or burst deflection routing.

The research on TCP over OBS presented in BTCP [27],
BAIMD [40], TCP-BCL [43], and SAIMD [48] have
successfully resolved the vicious effects of false congestion
detection due to the bufferless characteristic in the OBS
networks. They improved the TCP sender reaction to each
packet-loss event relevantly. However, each scheme suffers
from some overhead as well, such as a high computation
complexity and/or extra signaling in the OBS networks. Also,
some of the above schemes may fail to overcome the problem
of losing large number of packets assembled in a single burst.
Furthermore, it is necessary to evaluate the convergence rate
of TCP in presence of either a constant RTT in the barebone
OBS or different values of RTT occurred due to the
deployment of burst contention resolution schemes.

B. TCP Convergence Rates for Large Bandwidth-Delay
Product Networks

There exists a significant lack of performance evaluation on
the TCP modifications proposed for a network environment
with a large bandwidth-delay product over the OBS networks.
Fast TCP [8][9], Binary increase congestion control (BIC)
TCP [51], Explicit Control Protocol (XCP) [52], TCP with
Simple Available Bandwidth Utilization Library (SABUL)
[53], High Speed (HSTCP) [54], and Scalable TCP (STCP)
[55], are among the most famous promising solutions. XCP
has shown stability and efficiency using ECN through
extending ECN and Core Stateless Fair Queue (CSFQ), which
make XCP aware of the per-flow state and buffer size status.
XCP uses Multiplicative Increase Multiplicative Decrease
(MIMD) to control the congestion window, which increases
the transmission by Δ (i.e., Δ = squares the bandwidth - the
queue size). On the other hand, it uses AIMD to control the
fairness. If Δ > 0, then divide by Δ equally between the co-
existing flows otherwise, divide Δ between flows
proportionally to their current rates [52]. SABUL introduces a
hybrid approach by merging the rate-based transmission via
UDP and reliable retransmission via TCP, where a UDP
channel is adopted for transmitting data at high rates, while a
TCP channel is used to resend the missing data segments to
ensure reliability [53]. Depending on the current cwnd,
HSTCP uses a(cwnd) and b(cwnd) for computing the next
window size. This scheme is known to be a safe incremental
approach [54]. A simulation-based study for HSTCP over
OBS is presented in [28]. Using small burst assembly delay
and moderate burst dropping, the study shows that HSTCP
throughput is severally affected. Scalable TCP (STCP) uses
MIMD approach with sending rate 0.01 and multiplicative rate
as 1/8. STCP is a sender-side TCP that offers a robust
mechanism to improve performance in high-speed wide-area
networks using traditional TCP receivers. STCP increases the
TCP's cwnd by 0.01 for each acknowledged packet (not in the
fast recovery stage), while cuts the cwnd by 0.875 for each
packet-loss event [55].

There exist several proposed schemes that solve the TCP
slow-convergence problem over high-speed networks. There is
a need to evaluate the burst assembly delay and burst dropping
over these TCP congestion-control algorithms. There are great
opportunities for investigating the effect of the burst-assembly

delay, burst dropping vs. packet aggregation gain on Fast
TCP, Scalable TCP, XCP, and SAUBL. It is known that the
above schemes can archive faster convergence of TCP
throughput in large-bandwidth high-delay networks by quickly
enlarging their cwnd. However, with large cwnd, the number
of acks is significantly decreased. In the presence of random
burst losses that contain a large number of acks packets results
into dramatic damage in the TCP ack-clocking and forces TCP
to fall into false detection of network congestion. Thus,
retransmit an unnecessary large number of packets.
Furthermore, the ack losses are expected to affect large
number of TCP senders since the burst can assemble many
acks packets due to their small size. Up to our knowledge, the
effect of ack packet losses over OBS networks has not been
addressed in the literature.

C. Performance Modeling for TCP over OBS Networks

The previously reported TCP over OBS performance
modeling technique follows the packet-oriented approach
[17][25][26][43][48][50]. These studies use Markov
modulated Poisson arrival of the traffic [64]. In early 90’s, the
fluid modeling technique proposed in [60] has added a new
dimension for modeling large number of TCP flows.
However, the fluid modeling approach requires maintaining
few strict assumptions, such as (1) having very large number
of TCP flows, (2) with Poisson arrival of loss events, and (3)
with strong correlation between losses in one RTT while being
independent among the other RTTs. Regarding the first
assumption, there is no sufficient evidence that the number of
TCP flows is sufficiently high at the OBS edge node. In OBS,
since both random burst drops and dropping due to persistent
congestion may occur, the second assumption is subject to
further investigation. The third assumption can partially be
justified as that in the barebone OBS the RTT is more or less
fixed. This is because the third assumption can only hold for
the TCP flows which can emit the TCP segments of their
entire cwnd while being assembled in one burst (e.g., fast
flows [25]). We conclude that using the fluid model for
evaluating TCP throughput performance over OBS requires
significant improvements before being considered accurate.

The synchronization modeling approach proposed in [61]
benefits from the ack-clocking to include the burstiness factor
in the fluid model. Note that the fluid model assumes that
there is no burstiness and the TCP rates of different flows are
differentiable. Therefore, it may take infinitely long time to
converge. The synchronization approach has been used for
modeling Fast TCP and obtaining its stability by [61] and [62].
In order to obtain sufficient analysis for TCP performance
while considering TCP stability, scalability and responsively,
the synchronization modeling approach needs to capture the
bufferless nature of OBS links (i.e., fixed TCP RTTs), the
burst aggregation factors, and the burst-loss distribution.

V. CONCLUSIONS
The research efforts of modifying and extending conventional
TCP implementations have been extensively reported in the
past years; however, relatively limited knowledge has been

gained in terms of the impacts on in the upper layer
applications when OBS is adopted underneath in presence of
burst dropping at different traffic loads. This article provides a
comprehensive review and tutorial on the previously reported
congestion control schemes for TCP over OBS networks. With
the taxonomy identified in this review article, these schemes
are classified into three categories, including the link-layer
solutions, the congestion detection mechanisms with and
without explicit notifications between the OBS edge nodes
and the TCP senders. We have enumerated and discussed each

category in details, aiming to provide a complete picture on
the development of TCP enhancements over the OBS
networks. We have also presented some future research
directions for TCP enhancements in presence of various OBS
characteristics, including the scenarios of large bandwidth-
delay products, the schemes for protecting the TCP ack
packets, and the extensions and elaborations of the existing
modeling techniques (e.g., fluid and synchronization
modeling), in order to capture the burst transmission
characteristics for TCP over OBS networks.

Schemes Solution
Category OBS Type

Devices Involved
Explicit

Notifications

Problem Addressed

TCP
source

OBS
edge

OBS
core

Random
burst
Loss

Slow
Convergence

Packet
Reordering

Adaptive
Assembly Period

(AAP)
link-layer barebone/BCR √ √ √

Burst
Retransmission link-layer BCR √ √ √

Deflection
Routing link-layer BCR √ √

FDLs link-layer BCR √ √
Burst

Segmentation link-layer BCR √ √

Wavelength
Conversions link-layer BCR √ √

Retransmission-
Count Dropping link-layer BCR √ √ √ √

TCP with Burst
Acknowledgement link-layer barebone/BCR √ √ √ √ √

TCP Decoupling link-layer barebone/BCR √ √ √
BTCP with Burst
Length Estimation

without
Signaling barebone/BCR √

BTCP with Burst
ack Signaling barebone/BCR √ √ √ √

BTCP with burst
Nack Signaling barebone/BCR √ √ √ √ √

Burst AIMD without
Signaling barebone/BCR √ √ √ √ √

TCP-Burst
Contention Loss Signaling barebone/BCR √ √ √ √ √ √ √

Statistical AIMD without
Signaling barebone/BCR √ √ √ √

Threshold-based
Vegas

without
Signaling BCR √ √ √

Table II: Overview of the surveyed OBS solutions for TCP.

REFERENCES
[1] W. Stevens, “TCP/IP Illustrated, Volume 1, Addison Wesley Longman,

1994.
[2] J. Postel, “Transmission Control Protocol,” RFC 793, Protocol

Specification, DARPA Internet Program, 1981
[3] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D.,

Rockell, R., Seely, T. & Diot, C. 'Packet-Level Traffic Measurements
from the Sprint IP Backbone'. IEEE Network, 17(6), November-
December, pp. 6-16, 2003.

[4] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms,” RFC 2001, 1997.

[5] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgement Options,” RFC 2018, 1996.

[6] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestion
avoidance on a global Internet,” Journal on Selected Area, vol. 13, no. 8,
pp. 1465-1480, October 1995.

[7] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth-Delay Product Networks,” Proceedings, ACM SIGCOMM,
2002.

[8] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” Proceedings, IEEE Infocom, 2004.

[9] S. Hegde, D. Lapsey, and et. al., “FAST TCP in high-speed networks:
An experimental study,” Workshop on Networks for Grid Applications,
October 2004.

[10] H. Balakrishanan, R. Katz, “Explicit loss notification and wireless web
performance,” Proceedings of IEEE Globecom, Internet
MiniConference, 1998.

[11] S. Floyd, “TCP and explicit congestion notification”, ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp8-23, 1994.

[12] Y. Chen, C. Qiao, and X. Yu, “An optical burst switching: a new area in
optical networking research,” IEEE Network, vol. 18, no. 5, pp. 16-23,
2004.

[13] T. Battestilli, H. Perros, “An introduction to optical burst switching,”
IEEE Optical Communications, vol. 41, pp 510-515, 2003.

[14] Y. Xiong, M. Vandenhoute, and H. Cankaya, “Control architecture in
optical burst-switched WDM networks,’ IEEE Journal on Selected
Areas in Communications, vol. 18, no. 10, pp. 1838-51, 2000.

[15] M. Yoo, C. Qiao, “Just-Enough-Time (JET): A high speed protocol for
bursty traffic in optical networks”, Proceedings of IEEE/LEOS
Technology for Global Information Infrastructure, pp. 26-27, 1997.

[16] J. Y. Wei and R. I. McFarland, “Just-In-Time signaling for WDM
optical burst switching networks”, Journal of Lightwave Technology,
vol. 18, pp. 2019–2037, 2000.

[17] Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Evaluation of Burst
Retransmission in Optical Burst-Switched Networks,” Proceedings, 2nd
International Conference on Broadband Networks 2005, Boston, 2005.

[18] Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Analysis of TCP over
Optical Burst-Switched Networks with Burst Retransmission,”
Proceedings, IEEE Globecom, St. Louis, 2005.

[19] C. Hsu, T. Liu, and N. Huang, “Performance analysis of deflection
routing in optical burst-switched networks,” Proceedings, IEEE
Infocom, vol. 1, pp. 66–73, 2002.

[20] M. Schlosser, E. Patzak, P. Gelpke, “Impact of deflection routing on
TCP performance in optical burst switching networks”, 7th International
conference on Transparent Optical Networks, 2005.

[21] I. Chlamtac, A. Fumagalli, et al., “CORD: Contention Resolution by
Delay Lines,” IEEE Journal on Selected Areas in Communications, vol.
14, no. 5, pp. 1014-1029, 1996.

[22] V. Vokkarane, J. Jue, and S. Sitaraman, “Burst segmentation: an
approach for reducing packet loss in optical burst switched networks”,
IEEE International Conference on Communications (ICC), vol. 5, pp.
2673 – 2677, 2002.

[23] A. Zalesky, Le Vu Hai, M. Zukerman, Z. Rosberg, and E.W.M Wong,
“Evaluation of limited wavelength conversion and deflection routing as
methods to reduce blocking probability in optical burst switched
networks”, IEEE International Conference on Communications (ICC),
vol. 3, pp.1543 – 1547, 2004.

[24] X. Cao, J. Li, Y. Chen, and C. Qiao, "Assembling TCP/IP packets in
optical burst switched networks", Proceedings of IEEE Globecom, 2002.

[25] A. Detti and M. Listanti,” Impact of segment agreegation on TCP Reno
flows in optical burst switching networks, “ in the proeccedings of IEEE
Infocom, 2002.

[26] X. Yu, C. Qiao, Y. Liu, and D. Towsley, “Performance evaluation of
TCP implemenations in OBS networks,” Technical Report, 2003-13, the
State University of New York at Buffalo, 2003.

[27] X. Yu, C. Qiao, and Y. Liu, “TCP implementation and false time out
detection in OBS networks,” in the proceedings of IEEE Infocom, 2004.

[28] L. Zhu, N. Ansari, J. Liu,” Throughput of high-speed TCP in optical
burst switching networks”, IEE proceedings Communications,
vol. 152, no. 3, pp. 349-352, 2005.

[29] P. Du, and S. Abe, “TCP Performance Analysis of Optical Burst
Switching Networks with a Burst Acknowledgement Mechanism”, Asia-
Pacific Conference on communication and International Symposium on
Multi-Dimensional Mobile Communication (APCC2004/MDMC2004),
August, 2004.

[30] S.Y. Wang, "Using TCP congestion control to improve the performances
of optical burst switched networks," in the proceedings of IEEE ICC,
2003.

[31] C. Cameron, J. Choiy, S. Bilgrami, et al, “Fixed-Point performance
analysis of TCP over optical burst switched networks”, in the
proceedings of ATNAC, 2004.

[32] S. Gowda, R. Shenai, K. Sivalingam and H. Cankaya, "Performance
evaluation of TCP over optical burst-switched (OBS) WDM networks",
Proceedings of IEEE International Conference on Communications, pp.
1433-1437, 2003.

[33] L. Kim, S. Lee, and J. Song, “Dropping Policy for Improving the
Throughput of TCP over Optical Burst-Switched Networks”, ICOIN, pp.
409-418, 2006

[34] S. Lee, L. Kim, “Drop Policy to Enhance TCP Performance in OBS
Networks”, IEEE Communication Letters, vol. 10, no. 4, 2006.

[35] J. White, R. Tucker, and K. Long, ”Merit-based scheduling algorithm
for optical burst switching,” International conference on optical
networks, pp. 75-77, Korea, 2002.

[36] I. Ogushi, S. Arakawa, M. Murata, and K. Kitayama "Parallel
reservation protocols for achieving fairness in optical burst switching,"
in the proceedings of IEEE Workshop on High Performance Switching
and Routing, pp. 213-217, 2001.

[37] A. Kaheel, and H. Alnuweiri, “Batch scheduling algorithms for optical
burst switching networks”, Proceedings of IFIP Networking, pp. 90-101,
2005.

[38] B. Zhou, M. Bassiouni, G. Li, “Improving fairness in optical-burst-
switching networks”, Journal of Optical Networking, vol. 3, no. 4,
pp.214, 2004.

[39] J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical
burst switching networks", Proceedings of IEEE Infocomm, pp. 1853 –
1863, 2004.

[40] B. Shihada, P-H. Ho, F. Hou, and et al, “BAIMD: a responsive rate
control for TCP over optical burst switched (OBS) networks,” IEEE
International Conference on Communications (ICC), Turkey, 2006.

[41] Y. Yang, S. Lam, “Generalized AIMD congestion control,” University
of Texas, Technical Report TR-2000, available at
http://www.cs.utexas.edu/users/lam/NRL/TechReports/

[42] L. Cai, X. Shen, J. Pan, and J. W. Mark, “Performance analysis of TCP-
friendly AIMD algorithms for multimedia applications”, IEEE
Transaction on Multimedia, vol. 7, no. 2, pp. 339-355, 2005.

[43] B. Shihada , and P-H. Ho, "A Novel TCP with Dynamic Burst-
Contention Loss Notification over OBS Networks", Elservier Journal of
Computer Networks, Vol. 52/2, pp. 461-471,2008

[44] S. Bhandarkar and N. Reddy, “Improving the robustness of TCP to non-
congestion events”, internet draft draft-ietf-tcpm-tcp-dcr-01.txt, 2004

[45] P. Sarolahti, M. Kojo, “F-RTO: an algorithm for detecting spurious
retransmission timeouts with TCP and SCTP”, internet draft draft-ietf-
tcpm-frto-01.txt, 2004.

[46] R. Ludwig, A. Gurtov, “The eifel response algorithm for TCP”, Internet
draft draft-ietf-tsvwg-tcp-eifel-response-05.txt, 2004

[47] S. Bhandarkar, N. Sadry, N. Reddy and N. Vaidya, “TCP-DCR: a novel
protocol for tolerating wireless channel errors”, IEEE Transactions on
Mobile Computing, 2004.

[48] B. Shihada, P-H Ho, and Q. Zhang, “SAIMD: A Congestion Detection
Scheme for TCP over OBS Networks”, submitted to IEEE Journal of
Lightwave Technology (JLT), February 2007.

[49] B. Shihada, Q. Zhang, and P-H. Ho, "Threshold-based TCP Vegas over
Optical Burst Switched Networks", 15th IEEE International Conference
on Computer Communications and Networks (ICCCN'06), Virginia,
USA, October 2006.

[50] B. Shihada, Q. Zhang, and P-H. Ho, “Performance Evaluation of TCP
Vegas over Optical Burst Switched Networks”, IEEE Broadnets, the 6th
International Workshop on Optical Burst/Packet Switching (WOBS),
San Joes, USA, October, 2006.

[51] L. Xu, K. Harfoush, and I. Rhee, “Binary incrase congestion control
(BIC) for fast long-distance networks”, IEEE infocom, Hong Kong,
China, 2004.

[52] A. Falk, D. Katabi, "XCP Protocol Specification", Internet Draft,
February, 2004.

[53] H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, Q. Zhang,
“Simple Available Bandwidth Utilization Library for High-Speed Wide
Area Networks”, Journal of Supercomputing, 2004S.

[54] Floyd, ”High-Speed TCP for large congestion windows”, RFC 3649,
Experimental, December, 2003

[55] T. Kelly, “Scalable TCP: improving performance in highspeed wide area
networks”, ACM SIGCOMM, vol. 33, no. 2, pp. 83-91, 2003.

[56] J. Liu, and S. Singh, “ATCP: TCP for mobile Ad Hoc networks”, IEEE
JSAC, vol. 19, no. 9, pp 1300-1315, 2001.

[57] E. H.-K. Wu and M.-Z. Chen, “JTCP: Jitter-based TCP for heterogenous
wireless networks”, IEEE JSAC, vol. 13, no. 4, pp 757-766, 2004.

[58] S. Biaz and N. Vaidya, “De-Randomizing congestion losses to improve
TCP performacne over wired-wireless networks”, IEEE/ACM
Transactions on networking, vol. 13, no. 3, pp. 596-608, 2005.

[59] I. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: A new
congestion control scheme for satellite IP networks”, IEEE/ACM
transaction on networking, vol. 9, no. 3, pp 307-321, 2001.

[60] V. Misra, W.-B. Gong, and D. Towsley, ”Fluid based analysis of a
network AQM routes supporting TCP flows with an application to
RED,” Proc. ACM SIGCOMM, pp. 151-160, 2000.

[61] D. Wei, “Congestion control algorithms for high speed long distance
TCP connections”, Master thesis, Caltech, 2004.
http://www.cs.caltech.edu/~weixl/research/msthesis.ps

[62] J. Wang, D. Wei, S. Low,”Modeling and Stability of Fast TCP”, IEEE
Infocom, pp. 938-948, 2005.

[63] B. Shihada, Q. Zhang, and P-H. Ho, “Performance Evaluation of
Threshold-Based TCP Vegas over Optical Burst Switched Networks”,
submitted to IEEE Journal on Selected Areas in Communications,
January 2007.

[64] T. Karagiannis, M. Molle, M. Faloutsos, A. Broido, “A Nonstationary
Poisson View of Internet Traffic”, IEEE Infocom, 2004.

Figure 1. An illustration of OBS networks

Figure 2. OBS edge node architecture

Figure 3. OBS core switch architecture

Figure 4. The taxonomy of solutions for TCP in OBS networks

Figure 5. Flowchart of TCP-BCL over OBS

Figure 6. Flowchart of the BAIMD congestion control scheme

Figure 7. Flowchart of the SAIMD congestion control scheme

Figure 8. The threshold-based TCP Vegas congestion control scheme.

